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SEMINAR UNIFORM SPACES 1975 - 76

Reflections on distal spaces

Jir{ Vil{movsky

Embedding preserving modifications in the category
of separated uniform spaces are studied. It is shown that
the cnly such reslecticns on distal spaces are just car-
dinal reflections.

We shall wnrk in the category ol separated uniform
spaces and uniformly continuous mappings. A reflective
subcategory & with the reflector r will be called modi-
fication if r preserves the underlying sets (i.e @& con-
tains all precompact spaces). Of course, every modifica-
tion is closed under arbitrary subspaces. The modification
r will be called embedding preserving if rX is a subspace
of r¥ whenever X is a subspace of Y. 4 modification r will
be called coarser than s whenever for all X rX has coarser
uniformity than sX.

For a modification r and unifiorm space X we shall de-
note_reX the supremum of all uniformities sX (in the order
"coarser than"), where s is a set preserving functor which
agrees with r on all injective uniform spaces. This defin-
es for any modification r another modification Ty and the
following easy statement holds:

Proposition 1: For any uniform space X and modifica-
tion r the value reX can be constructed in the following
way: We embed X into some injective space ¥ and reX will
be the relative uniformity from rY¥,

A modification r is embedding preserving if and only if

r =
I‘e.

For a cardinal number &%, the cardinal reflection
D% 43 a modification onto the class of all X such thast
every uniform cover of X is refined by a uniform cover of
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cardinality less than M o 4 373ce it cnllen Zi-¢nn
if it has o basgis of inil--direrzicn:) covors, The
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reflcctor L is an crbedding orescevi Z
Under generclizod continuum hynothooes o CHE) o1l
dinal rcflccltionc are ombhodding srescovinge This ool
is not Xnown: without GC i, ,mt if w reztrict ~urs.lv g
to distyl) spaces (more generally to snaces wit™ ooiir-
nitc base) the result is an immedin- e consa.auinc: od b
theorem of Vidogaich [3). Forecver on: can =3i’y oot
for any cardinal number g4, p*X iz distal, whon
X 1is distal, hcnes p%® D = Up% o ror details en di-o)

spaces sce [11.

Prcposition 2 Let 3 £ o be ordinal nurmbors, I
conmpact interval, then

pB(I x s ) = I=pPy,

(The unitormity on ¥%_ is taken unirformly discrete.)
Proof: Obviously pf(I = &, ) is fincr ta n
prﬂkx . Conversely take U = {Ui; ie A 3 uniicr:
cover of I = #4, oi cardinality less than g . (Sue
covers form a basis or pP(I x #_ ), because T =
has a basis of point finite covers [3].) We czn find 1
finite uniform cover 4 P;,P5,...,P 3 of I such thot ti

cover
£P;» £§¢ 5 i2n, e w3

refines U . For any J =41y,i5,...,1 yc A we denote
G(J) = 4 ¢ ;ij-tg} c Uij, J =1,2,00eyn%
The cover
P.x G(J
1 Py= 6(NE,

is a uniform cover of Ixp@ %, refining U .

Proposition 3: Let r bc a modification, H,
cardinal number (with uniformly discrete uniformity),
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ri, F K . Then there exists (3 £ o« such that

reg =DPP¥, . (Also known to Pelant and Reiterman.)
Proor: Let (3 bc the smallest ordinal number 9 such

that r ¥ has no uniformly discrete subspace of cardina-

lity %o .« Then (3 < oc and ri6, =plr . , hence
pP«_ is liner than r %, . Conversely take a parti-
tion U of ¥, into Ky < % elements. AU can be re-
alized by a uniformly continuous surjective mapping onto
$g Wwith unilornly discrete uniformity. g 1s a uniform
subspace of r¥&, , hence so is r¥¥, , oand hence r 4o =
= %oy . So the mapping realizing YU remains uniformly
continuous from re into Ko s hence 9 is a uniform
cover OL I'$_,

Proposition 4: Lct X be a cartesian product of a com=-
pact interval I with a uniformly discrete space %, , I
be an embedding preserving modification with rX# X. Then
there is (3 & oc such that rX = pRX,

Proof: Using Proposition 3 we have r&_ = pPx
for some (3 £ oc . r{ is finer than Ixrg,. = IxpB ¥,
which is equal to p®X by Proposition 2. Assume that rX con
tains a uniformly discrete subspace of cardinality ¥p o
then r & . being a subspace of rX alsc contains such a
subspace and this is the contradiction with r&_, = pR%.. s

hence r¥ = pRX.

Recall that the hedgehog over a set A, denoted by H(A) is
the set of all <a,x»> , a€eA, 0£x £1, where we consider
{a,0» = <b,0)» for each a, b in A with the metric
d(<Ca,x»,<ayy>) =lx =yl and d( < a,x>,<b,y?) =

=x + y if a%b. Subspaces of products of hedgehogs are ex-
actly distal spaces (see L11). The following lemma appe ars
inL2]:

Lemma: Assume that the uniform spaces X and Y are topolo—
gically equivalent. If xe X and if the uniformities of X
ard Y coincide on the complement of each neighbourhood of
X, then X = 1,

Immediately from this lemma and Proposition 4 we obtain
the following:
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Proposition 5: Let H = H(%_ ) be the hedgehog ov,
M » T an embedding preserving modification, then rj .
- pPH for some 3 £ oc .

Remark: In the preceding proposition we can orit
the words "embedding preserving”, because H is an inject.
ive space [4], so we can replace r by r, from Propositiy

1.
Using the fact that each distal space is a subspace o j
product of hedgehogs one can easily derive the follaving

Theorem: Let X be a distal space, r an embedding
preserving modification, then there exists a cardinal m
ber %, such that rX = p°X,

Corollary: If X 1s a distal space there is only

finite number of embedding preserving modifications with
distinct values on X,
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