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Universal metric spac s

Pel nt J n

Cornet-sprces given in [P) ar  xamples of uniform spa
ces or  rbitrarily loarg point characever. We will not repeat
a full definition oi theaec spaces; we only mention the fol-
lowing: to each regul'r cardinals o , (3 , a m trizable uni-
rorm space UloC ,{8) is piven such that point-character of
Ulecyf5 ) is greater than m (m is ny regular cardinal < (3 )
and each uniform space X whose point-character is not great-
2r than /3 and cov 'ring, ch racter is less or equal to o«
is homeonerphic tec ¢ ¢ subspnce olf a suitable cartesian pro-
duct of U(x ,@). MHowever, therce is an aesthetical derect in
the last assertion: it is not true in gencr -1 that U(a.’,/3)
satisfies the same condition on ch racters as an embedded X,
usually point-character cr Ul o, 3) is greater than 3 and
covering character is greater than oo (exceptions are e.ge
counles where (3 = @ ). The desired result of the present
rote is to save an acsthetic. Universal metric spaces are
given 2nd they s hculd help in a continuation of an investi-
gation of characters «& uniformiti.s.

Construction: Let a, b be infinite cardinals. N =
=40,1,2,...%. Put H = ax%03, K = min {(a',b)

H =( = (card H_;)P)x4Ln3, K, = niné(card H}",b)

n BEKnm-1
Put A = sup card Hp e
n
Put ¥ = 4N,

We shall employ the following notation:
PM) =4Lcu | L*p3
Pa(i) =4L € P(W) | card L=d .

Clearly, card & (a) £A, Choos a mapping ¢ <Iro 4 onto
b(HG). Je devine @ relotion R c XxH_ hy:

(z,h) Ry iff he ¢ lx ), x = (x5 , yeen



Choose a one-to-one mapping p; from H; onto gab(Ho). We

define a relation P c Hy= H_ by: (hl,ho)e P, iff h e pl(hl)
For M € @b(HO) choose a mapping ‘V'M from A onto

® (M), Let Mo Q be element3s of ‘?b (H))e We put [M,QJ=

=theH |Qepj(h)e M3, card P ([M.2])&A. Ve choose 3

mapping t;; o from A onto P(CM,Q1). Now we are prepared

H -
to define a relation Rlc Xle:
(x,h)e R, iff he tM(x),Q(x)(XZ) where M(x) = ¢ (x ) and Qi

- Vq(xo)(xl)°
We put Zl =4JcH; | card J< b and »}QD RIl(,j)#ﬁ} =
= U4 ?b[M,Q] | Qem e P(H,)§ card zl = =  (card!

p<Ka
Suppose Ry_; and X, _; are defined. We shall define R, a

Zk. We choose a one-to=onc mapping Py from Hk onto zk_
We define a relation pycH_;=H by: (hk,hk_l)é P, iff
hy_i& pp(hy ). For M € £, _, we choose ¢y from A onto &P

For QcM e X, _, we put [M,Q1=4heH |Mop, (h)2 Q2 and

we choose a mapping tﬁ q from A onto ?b( CMQY). We defi
o~ ?

a relation R c X=H, by:
. k _ .
(x,h)e R, iff he tM(x)’Q(x)(ka) where M(x) = R, _,(x), Q(x)

. N
= Y u(x) *2k-1
We define %, =4JcH l{e\:) R]';l (§) %083} . cara Z =
- = card Hlf

B< Kg g
Now we define a pseudometric uniformity U(a,b) on ¥X. For
heH , we put B = {xeX | (x,h)e R §. We define a cover @
of X by. w, =4 h}héﬁn.

Claim: MU, =X %__1, n=1,2,3,...

A Hausdorff reflection of (X,Ula,b)) will be denoted by
M(a,b). We put M(a,b) = (X,U(a,b)).

Explanation: Being afraid that the very simple
idea of Construction has lost in a not very cultured forcs
of mathematical symbols we add a few human words: the basi(
idea is to represent a system of subsets of a set X by il
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incident gaph (the iaea well-known to all who are familiar
with hypergraphs); relations R™ s are yielded by incidence
relations o1 covers ’u.i; rclations P° s describe which mem-
bers of WU _; contain some element of Uj; ; the choice of
P; assures th t th unizormity of M(a,b) is involved as
much as possible (an nccessoary); of course, the complexity
of Ii{a,b) is iven ~lso by th.  choice of 'v'M's and tM,@.
(it is  mapping tI%,O. which gives th t U, I uk-l)‘

It should be mentioned thit Kn's were introduced only for
technical needs ol thc proc dure us.d below.

Definition 1: Let X be n set. Let 3 be a cover of X.
4 point=ch racter pc P of P is defincd as the least car—
dinal (3 such that c rd 4P| x€P and Pe PR3 < B ror each
x€ Xo

Definition 2: Let (X,%) bec a unitform spacec. Covering
character tc (X, ) (point-character pc (L,U) of (X,U)) is
defined as follows: te (X) £ o (pc (X) £ B resp.) iff the-
2c is a base B of (X, ) such that ror cach Pe B card P<
<« (pc P2 (3 , resp.),
Ve (X,U) =« if Ve (X,U)&cac and Vek,%) £ B
tor each B <o (V =1t or pl.

The following assertion which generalizes [ V) seems to
bc usciul.

Proposition 1: Let ¥ be a uniform spacc. If
te (X,%) £ «¥ , then pe (X, U) £ ¢ -

Precof: Iet A be an X-uniiorm cover. Take an X-uniform
¢cove Y which d uble star-refines U i.e. VX U
ad card U £ o« . Suppose U is well-ordered by =3 in
such a way that (¥,3) 2> B £ o¢ .

For ecach Ve U choose Uy € 4 such that
st4V, ¥y c Uye vor VeV, defin &y = Uy =
S U4{We | W3V3E. It is casy toch ck t t {1 Yy
is an ¥-uniform cover vhich reiinecs U
"md card {Fy | <€ V§< oc fer ach x£¥ (o xen, "t
V.= mnin4{Ve ¥ | xeV3§; then X€Fy; i V&-—V{).

For V& ¥ , put % = nin{ € T inveg 3. .
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VCF,..

Remark: One can derive from Proposition 1 that ir th
density of a topologzical space X is less than a+, then ead
uniformity inducing the topolngy of X has point-character
less than a.

Definition 3: Let a, b be infinite cardinals. A met
rizable uniform space is called (a,b)-universal irf tc (V)
and pc (V)£ b, and each uniform space X with tc (X)£ a and
pc (X)£b can be embedded in a suitable product of V.

Theorem 1: Let a, b be infinite cardinals. If cf a>
> @ then there is no (u,b)-universal space.

Proof: A metrizable uniform space V has a countablc
se J3 of uniform covers. Suppose tc (V)< a. As cf (a) >
there is a cardinal d such that ?seup% card < d<a which

shows that V cannot be (a,b)-universal for any b.

Remark: The quite different situation occurs if we l
ve the condition oL mctrizability of universal spaces.

Theorem 2: Let a, b be infinite cardinals.
1) If a = d and d®= 4 Ffor cach (3 < b, then there is an
(a,b)-universal space V(a,b).

2) If a is a limit cardinal, cf a = @  and

(x) b)ocﬂ<afore3ch @< < a

B=< mon (ot
then there is an (a,b)-universal space V(a,b).

Proof: 1) 1In this case, ProposZition 1 implies that
: d <d. i ! L\ ° d
can suppose that b<d. Consider a space M(d,b). As p%b

= d we gain that card H  in Construction is equal to d. Her
tc (M(d,b)) £ a. Clearly, pc (M(d,b))<b and we put V(a,b):
= M(d,b).

2) Take an increasing sequence 'i'd'n}neN of cardinals co
verging to a, (&) implies that tc (Mlec ,b))4 a for each n

We put V(a,b) -~ mT[eN M(acn,b).

Remark: Under Generalized Continuum Hypothesis, there
an (a,b)-universal space for each couple (a,b) such that a
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an isolated cardinal or o¢f a = @ .
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