Jan Pelant Universal metric spaces

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces., 1976. pp. 49–53.

Persistent URL: http://dml.cz/dmlcz/703142

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

SEMI AR U TFORM SPACES 1975-76

Universal metric spac s

Pel nt J n

Cornet-spaces given in [P] ar xamples of uniform spa ces of rbitrarily larg point character. We will not repeat a full definition of these spaces; we only mention the following: to each regular cardinals & , & , a m trizable uniform space $U(\propto,\beta)$ is given such that point-character of $U(\alpha, \beta)$ is greater than m (m is ny regular cardinal $< \beta$) and each uniform space X whose point-character is not greater than $oldsymbol{eta}$ and covering character is less or equal to $oldsymbol{lpha}$ is homeomorphic to sine subspace of a suitable cartesian product of $U(x, \beta)$. However, there is an aesthetical derect in the last assertion: it is not true in general that $U(\alpha,\beta)$ satisfies the same condition on characters as an embedded X, usually point-character of $U(\alpha, \beta)$ is greater than β and covering character is greater than & (exceptions are e.g. couples where $\beta = \omega_0$. The desired result of the present note is to save an aesthetic. Universal metric spaces are given and they s hould help in a continuation of an investigation of characters of uniformities.

Construction: Let a, b be infinite cardinals. $N = \{0,1,2,...\}$. Put $H_0 = a \times \{0,1,2,...\}$ Put $H_0 = a \times \{0,1,$

Put A = sup card H_n.

Put $\overline{X} = A^{\overline{N}}$.

We shall employ the following notation:

 $\mathcal{P}(M) = \{L \subset M \mid L \neq \emptyset \}$

 $\mathcal{P}_{d}(M) = \{L \in \mathcal{P}(M) \mid \text{card } L < d \}$.

Clearly, card $\mathcal{P}_b(a) \leq A$. Choos a mapping φ fro A onto $\mathcal{P}_b(H_0)$. We define a relation $R_0 \in X \times H_0$ by: $(x,h) \quad R_0 \quad \text{iff } h \in \varphi(x_0), \quad x = (x_0, \dots, x_0, \dots)$

Choose a one-to-one mapping p_1 from H_1 onto $\mathcal{P}_b(H_0)$. We define a relation $P_0 \subset H_1 \times H_0$ by: $(h_1, h_0) \in P_0$ iff $h_0 \in p_1(h_1)$ For $M \in \mathcal{P}_b(H_0)$ choose a mapping \mathcal{P}_M from A onto

For $M \in \mathcal{P}_b(H_0)$ choose a mapping \mathcal{P}_M from A onto $\mathcal{P}_b(M)$. Let $M \supset Q$ be elements of $\mathcal{P}_b(H_0)$. We put $[M,Q] = \{h \in H_1 \mid Q \in p_1(h) \in M \}$, card $\mathcal{P}([M,Q]) \not= A$. We choose a mapping $t_{M,Q}$ from A onto $\mathcal{P}([M,Q])$. Now we are prepared to define a relation $R_1 \subset \overline{X} \times H_1$:

 $(x,h) \in \mathbb{R}_1$ iff $h \in t_{M(x),Q(x)}(x_2)$ where $M(x) = \varphi(x_0)$ and $Q(x_0)$

- $v_{g(x_0)}(x_1)$.

We put $\mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } \mathcal{Z}_1 = \{ J \subset H_1 \mid \text{card } J < b \text{ and } J < b \text{ and$

 $= \bigcup \{ \mathcal{P}_b[M,Q] \mid Q \in M \in \mathcal{P}_b(H_o) \} \text{ card } \mathcal{Z}_1 = \sum_{\beta < K_o} (\text{card } H_o) \}$

Suppose R_{k-1} and $oldsymbol{\mathcal{Z}}_{k-1}$ are defined. We shall define R_k a

 \mathcal{Z}_k . We choose a one-to-one mapping p_k from H_k onto \mathcal{Z}_k . We define a relation $p_k \in H_{k-1} \times H_k$ by: $(h_k, h_{k-1}) \in P_k$ iff $h_{k-1} \in p_k(h_k)$. For $M \in \mathcal{Z}_{k-1}$ we choose v_M from A onto $\mathcal{P}(h_k)$.

For $Q \subset M \in \mathcal{Z}_{k-1}$ we put $[M,Q] = \{h \in H_k \mid M \supset p_k(h) \supset Q\}$ and we choose a mapping $t_{M,Q}^k$ from A onto $\mathcal{P}_b([M,Q])$. We define a relation $R_k \subset \overline{X} \times H_k$ by:

 $(x,h) \in R_k$ iff $h \in t_{M(x),Q(x)}^k(x_{2k})$ where $M(x) = R_{k-1}(x)$, $Q(x) = \boldsymbol{v}_{M(x)}^k(x_{2k-1})$

We define $\mathcal{Z}_k = \{J \in H_k \mid \bigcap_{j \in J} R_k^{-1} (j) \neq \emptyset \}$. card $\mathcal{Z}_k = -\sum_{\beta < K_{k-1}} \operatorname{card} H_k^{\beta}$

Now we define a pseudometric uniformity U(a,b) on X. For $h \in H_n$, we put $\widetilde{h} = \{x \in X \mid (x,h) \in R_n \}$. We define a cover $\mathcal Q$ of \overline{X} by $\mathcal Q_n = \{\widetilde{h}\}_{h \in H_n}$.

Claim: $u_n = u_{n-1}$, n = 1,2,3,...

A Hausdorff reflection of $(\bar{X}, U(a,b))$ will be denoted by M(a,b). We put M(a,b) = (X, U(a,b)).

Explanation: Being afraid that the very simple idea of Construction has lost in a not very cultured forest of mathematical symbols we add a few human words: the basic idea is to represent a system of subsets of a set X by it

incident graph (the idea well-known to all who are familiar with hypergraphs); relations R's are yielded by incidence relations of covers \mathcal{U}_i ; relations P's describe which members of \mathcal{U}_{i-1} contain some element of \mathcal{U}_i ; the choice of P_i assures that the uniformity of M(a,b) is involved as much as possible (an necessary); of course, the complexity of M(a,b) is liven also by the choice of \mathcal{U}_M 's and \mathcal{U}_{M-1} 's mapping \mathcal{U}_{M-1}^k , which gives that \mathcal{U}_k \mathcal{U}_{k-1} '. It should be mentioned that \mathcal{U}_n 's were introduced only for technical needs of the proc dure used below.

Definition 1: Let X be a set. Let $\mathcal P$ be a cover of X. A point-ch racter pc $\mathcal P$ of $\mathcal P$ is defined as the least cardinal $\mathcal B$ such that c rd $\{P \mid x \in P \text{ and } P \in \mathcal P\} < \mathcal B$ for each $x \in X$.

Definition 2: Let (X, \mathcal{U}) be a uniform space. Covering character to (X, \mathcal{U}) (point-character pc (X, \mathcal{U}) of (X, \mathcal{U})) is defined as follows: to $(X) \not\in \infty$ (pc $(X) \not\in \beta$ resp.) iff there is a base \mathcal{B} of (X, \mathcal{U}) such that for each $\mathcal{P} \in \mathcal{B}$ card $\mathcal{P} < \infty$ (pc $\mathcal{P} \not\in \beta$, resp.), ∇ c $(X, \mathcal{U}) = \infty$ if ∇ c $(X, \mathcal{U}) \not\in \infty$ and ∇ c $(X, \mathcal{U}) \not\models \beta$ for each $\beta < \infty$ (∇ = t or p).

The following assertion which generalizes [V] seems to be useful.

Proposition 1: Let X be a uniform space. If to $(X,\mathcal{U}) \leq \alpha^+$, then pc $(X,\mathcal{U}) \leq \alpha$.

Proof: let $\mathcal U$ be an X-uniform cover. Take an X-uniform cove $\mathcal V$ which duble star-refines $\mathcal U$ i.e. $\mathcal V \not\stackrel{*}{\simeq} \mathcal U$ and card $\mathcal V \not \in \infty$. Suppose $\mathcal V$ is well-ordered by \dashv in such a way that $(\mathcal V, \dashv) \simeq \mathcal B \not = \infty$.

For each $V \in \mathcal{V}$ choose $U_V \in \mathcal{U}$ such that $st\{V,V\} \subset U_V$. For $V \in \mathcal{V}$, defin $F_V = U_V =$

VCFw.

Remark: One can derive from Proposition 1 that if the density of a topological space X is less than a, then ead uniformity inducing the topology of X has point-character less than a.

Definition 3: Let a, b be infinite cardinals. A met rizable uniform space is called (a,b)-universal iff tc (V) and pc (V)
eq b, and each uniform space X with tc (X)
eq a and pc (X)
eq b can be embedded in a suitable product of V.

Theorem 1: Let a, b be infinite cardinals. If cf a > > \omega_0 then there is no (a,b)-universal space.

Proof: A metrizable uniform space V has a countable se \mathfrak{B} of uniform covers. Suppose to $(V) \leq a$. As cf (a) > there is a cardinal d such that $\sup_{\mathcal{P} \in \mathcal{B}} \operatorname{card} \mathcal{P} < \operatorname{d} < a$ which shows that V cannot be (a,b)-universal for any b.

Remark: The quite different situation occurs if we leve the condition of metrizability of universal spaces.

Theorem 2: Let a, b be infinite cardinals.

- 1) If a = d and $d^{\beta} = d$ for each $\beta < b$, then there is an (a,b)-universal space V(a,b).
- 2) If a is a limit cardinal, cf a = ω_0 and

(*)
$$\sum_{\beta < min(\alpha, b)} \alpha^{\beta} < a \text{ for each } \alpha < a$$

then there is an (a,b)-universal space V(a,b).

Proof: 1) In this case, Proposcition 1 implies that can suppose that $b \le d$. Consider a space M(d,b). As $a \in \mathbb{R}^d$ b = d we gain that card H_n in Construction is equal to d. Here $f(M(d,b)) \le a$. Clearly, $f(M(d,b)) \le a$ and we put $f(A,b) \le a$ $f(A,b) \le a$.

2) Take an increasing sequence $\{\alpha_n\}_{n\in\mathbb{N}}$ of cardinals coverging to a, (*) implies that to $(\mathbb{M}(\alpha_n,b)) \leq a$ for each now we put $V(a,b) = \prod_{n\in\mathbb{N}} \mathbb{M}(\alpha_n,b)$.

Remark: Under Generalized Continuum Hypothesis, there an (a,b)-universal space for each couple (a,b) such that a

an isolated cardinal or of a = ω_0 .

References:

- [P] Pelant J.: Cardinal reflections and point-character, Seminar Uniform Spaces, ČSAV, Prague 1975.
- [Vl Vidossich G.: Unitormities of countable type, Proc. A.M.S. 23 (1969), 551-558.