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SEMINaR UNIFORM SPACIS 1975 - 76

A NOTE ON @0 - UNIVERSAL SPACES.

It is proved that the cluss of all pseudometric
spaces with isometric embeddings forms a generali-
ze¢d Jonsson class. The existence of ¢ - universal
uniform spuces is derived us a consequence.
At first we repcat busic definitions.
Let 3@ be a concrecte cutegory. Under a generali-
zed Jonsson class we shall understund the class

|K of objects of % together with the class E
of one-to-one morphisms of 4 ( IK -embeddings)
fulfilling the following conditions:

1 IE (4i,3) is defined for all A,B from K .

E
f e JE (4,8) whenever £ is J, -isomorphism and
A,be K .

313 For felg (A,8), ge |JE (8,C) there is

gf < [E (4,C) .

If fe IE (A,B8) onto, then f-le IE (B,4) .

5; For 4,8,celk, felE (4,B), f[4i]lc CcB, the
inclusion C<»B from |[E (C,8) we have

FelE (4,C), where f is the range restriction

of £ .

1) I|K contains objects of arbitrarilly large



2)

i

3)

4)

6)

Let

A 1n

b

cardinuality

syoe K, fe l[E (4,8), then

i) flalelK .

i) There is an object C in IK and isomorphis

g: s—> C such that there is an inclusion
j: ««+C from IE (4,C) with gf = § .

For all 4,B€ IK there is Celk such that

IE (A,C) # 8, IE (3,C) # & .

Let 4,8,CelK , felE (C,4), gelg (C,B). The

there are Da K , f,€lE (4,D), gyeE (B,D)

with flf = 88 -

Let {Af ;j<§} be a chain in [k (that meun

5 is an ordirnal number, there 1s an inclusi-

on A»chlf in [E - for 72<§<§ ) « Then ther

is a unique (up to isomorphism) A ir [K on

the set U such that all Aj |K —embed in

to A. Let /i_f §<S} be another chain in K

fe IE (A ’Bﬁ) for §<§, fjch for£<’VL<5
(JB¢ (in IK ), then Ur.< |E (4,B) .
- = S A

Let A€ K , B be a subset of A of cardinality

less than ®& , where & 1is any infinite car

dinal number. Then there is Ce |K of cardina-

lity less than o , Bc CCA, and the inclusi

on Cc» A is in IE .

IK be a generalized Jdnsson class. An object

K will be called

o0 - universal, if for all B8 an IK with the
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¢ rdinality at most &« we have
JE (8,a) # 0 .

A, - homogeneous, if for wull B in K with the
¢ rdinality less than « and f,ge IE (B, ),
therc is8 un isomorphism h of A such that
hf = g »

Finully we define 1(IK, ) as the set of all equiva-
lence classes (under isomorphism) of objects in K

with the cardinality less thuan « . The main theo-
rem about Jonsson classes is the following:

4 ¢ rdinul number ;f:‘ulfilling a =a® . Let
|l(le)\é0<, . Then there is unique & - universal
and & - homogencous object in IK of cardinality
& o for details and proof of the theorem we re-
fer to [1] .

spaces with the class of all isometric embeddings
form a general zed Jonsson class.

Proof: The properties 1g,...,5;, 1),2),5),6) are
obvious, 3) is a consequence of 4), because the
onepoint space cuan be isometrically embedded into

any space from IM. It remains to prove the proper-

ty 4) .

Take (C,j), (4,a), <574>elb4, £1(C,1)— (a,4),

a: (C,IO-—+(B,F) isometric embeddings. Define on

the set § = Cva-f{C]v3-g[C] the function § of



A

two variables in the following way:

‘s’(x,y) = &"(x,y) for x,ye C

f(x,y) = & (x,y) for x,ye a-f(C]

f(x,y) = ﬁ(x,y) for x,yc B-g(C]

y(x,y) = x(fx,y) for xe C, yc a-f[C]
WXJ)= f(sx,y) for xg¢C, yeB-gliC]
y(x,y) = inf {u(x,fw) + KS(gw,yl} for xe a-f(C)

we C -
ye s-glC]

The rest will be defined symetrically.
Onc cun easily sce that £ is a pseudometric on
the sct D. Only the proof of the triangular in-
equality is slightly unpleasant because of muny
possibilities which is to take into account.
Now we can define fy: 4—D and g, 8 —=D in this
way:
fia = a for ag A-f[C]

£ la for ac f£Lc]

gy will be defined analogously. Of course, fl’gl
are isometric embeddings with respect to correspo
ding pseudometrics and flf = 8,8
Applying the general theorem we obtain the fol-
lowing:
Corollary: Let & be a cardinal number, XK=
> 29 . Then there is unique &« - universal and

oA - homogenecous pseudometric spacec P(é) of ihe
curdinality o .

Proof: There 1is
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S0 B,
a1 the t e rem *prlies.
Now we look ho this statement applies to the cuse
of metric spuces 'n  uniform spuaces,
Theorem: Let o« be a cardin'l number, & = X% >

> v . I'h.n th. e 1s

o <= univers 1 and A - homogenceous metric spu-

(X . . . .
ce ' ) ot cardinulity o .

. x) . _ )
Proof': "¢ put m( ) the associut .a melric space to

P(w). Ubserve that an isometric embedding of a met-

ric spuce N 1nto P( ) implies the 1lsometric embed-

(i) ()

N into M , hence M is & - universal

aing o’
of carcinuliivy o« . rrom the runcteriul nature of
maoking: o 'coclated matric spuces, pood ilscomorphisms

£ P( ) Lrangla « Lo gooa S oomorhisms of m( )
) } ]

3 ,'k'x‘l) ) 3 - -

nence I A = nomogeneous.,

for a uniflorm «pac A, the uniform weight of X is
the smullest cur "ilnality of basis of uniform co-
vers of X. rfor an irfinite cardinal number K we
shall denote U(K) the class of «l. (separated) uni-
form spaces having the uniform weipght at most K.,
f N X ~ V1 - . 3= G|
heo em: 2'or o = L~ =2 J= K<X cardinal
numbers, there 's .- ni ersa ir U'K) nilore
spe ce of carain-lity o .

Proof: sfor K = & tuke I w.*h ts .e'ri oDblc

uni ormity, for > W e ttk- th u * o rro-
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(w) yK

duct (M . For any Xe U(K), |X| <& there ur

L<K metric with JM | <1X| for all (, such

that X 1s a subspace of 111, ,. all M

) _ kx
, hence |li, is u subspace of
<K

(OC) )K

, Can be embeg

ded into M

(M@x))K, hcence (M is & - universal in U(K).

. . . K
Taking into account the assumption on & , X =
(W))K

hence the curdinulity of (i i8 «

Jonsson classes, hence as a consequence of the ge-

neral theory we cun hardly obtain better results,
2) 1t 1is a classical result that cvery

metric space of cardinality ut most & can be 1so

metrically embedded into the space 1,(x), hence

1 () is & - universal metric space of cardinali-

Ty 2%

. Our theorem gives a better result, assu-
ming that o 1is of special sort.

3) How strong is the condition a;=or;2’ ?
Generally it is strong. But assuming GCH (generc-

lized continuum hypothesis) any isolated cardinsl

numoer has the property.
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