Jiří Vilímovský A note on α -universal spaces

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces., 1976. pp. 43–48.

Persistent URL: http://dml.cz/dmlcz/703141

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $\mathit{DML-CZ}$: The Czech Digital Mathematics Library http://dml.cz

SEMINAR UNIFORM SPACES 1975 - 76

A NOTE ON & - UNIVERSAL SPACES.

Jiří Vilímovský

It is proved that the class of all pseudometric spaces with isometric embeddings forms a generalized Jónsson class. The existence of & - universal uniform spaces is derived as a consequence.

At first we repeat basic definitions.

Let $\mathcal K$ be a concrete category. Under a generalized Jónsson class we shall understand the class

K of objects of X together with the class E of one-to-one morphisms of X (K-embeddings) fulfilling the following conditions:

- l_E (A,B) is defined for all A,B from IK .
- 2_{E} felk. whenever f is X-isomorphism and A,Belk.
- 3_{E} For $f \in IE (A,B)$, $g \in IE (B,C)$ there is $gf \in IE (A,C)$.
- 4_{E} If $f \in IE(A,B)$ onto, then $f^{-1} \in IE(B,A)$.
- For A,B,C \in |K , f \in |E (A,B), f[A] \subset C \subset B, the inclusion C \hookrightarrow B from |E(C,B) we have $\tilde{f} \in$ |E(A,C), where f is the range restriction of f.
- K contains objects of arbitrarilly large

cardinality

- 2) $A,B \in \mathbb{K}$, $f \in \mathbb{E}(A,B)$, then
 - i) f[i] E | K.
 - ii) There is an object C in \mathbb{K} and isomorphis g: $B \longrightarrow \mathbb{C}$ such that there is an inclusion j: $A \longrightarrow \mathbb{C}$ from $F = A \cap \mathbb{C}$ with $F = A \cap \mathbb{C}$ such that there is an inclusion
- 3) For all $A,B \in K$ there is $C \in K$ such that $E(A,C) \neq \emptyset$, $E(B,C) \neq \emptyset$.
- 4) Let A,B,C \in |K , f \in |E (C,A), g \in |E (C,B). The there are D \in |K , f₁ \in |E (A,D), g₁ \in |E (B,D) with f₁f = g₁g.
- 5) Let $\{A_{\xi}; \xi < \xi\}$ be a chain in |K| (that mean ξ is an ordinal number, there is an inclusion $A_{\eta} \hookrightarrow A_{\xi}$ in |E| for $\eta < \xi < \xi$). Then there is a unique (up to isomorphism) A in |K| on the set $\bigcup_{i=1}^{N} A_{\xi}$ such that all $A_{\xi} : |K| = 0$ be another chain in |K| if $\xi \in |E| (A_{\xi}, B_{\xi})$ for $\xi < \xi$, $f_{\xi} \subset f_{\eta}$ for $\xi < \eta < \xi$ in |K|. Then $\bigcup_{i=1}^{N} f_{i} \in |E| (A_{\xi}, B_{\xi})$ for $\xi < \xi$, $f_{\xi} \subset f_{\eta}$ for $\xi < \eta < \xi$ in |K|, then $\bigcup_{i=1}^{N} f_{i} \in |E| (A_{\xi}, B_{\xi})$.
- 6) Let A∈ K, B be a subset of A of cardinality less than α, where α is any infinite cardinal number. Then there is C∈ K of cardinality less than α, B⊂ C⊂A, and the inclusion C⊂A is in E.

Let !K be a generalized Jónsson class. An object A in |K will be called

 α - universal, if for all B in \mathbb{R} with the

- c rdinality at most α we have $(B,A) \neq \emptyset$.
- α homogeneous, if for all B in K with the c rdinality less than α and $f,g \in E(B,)$, there is an isomorphism h of A such that hf = g.

Finally we define $I(\mathbb{K}_{\infty})$ as the set of all equivalence classes (under isomorphism) of objects in \mathbb{K} with the cardinality less than ∞ . The main theorem about Jónsson classes is the following:

Theorem: Let \mathbb{K} be a generalized Jónsson class, ∞

a c rdinal number fulfilling $\alpha = \alpha^{\infty}$. Let $|I(|K_{\alpha})| \leq \alpha$. Then there is unique α - universal and α - homogeneous object in |K| of cardinality α . For details and proof of the theorem we refer to [1].

Theorem: The class IM of all nonvoid pseudometric spaces with the class of all isometric embeddings form a general zed Jónsson class.

<u>Proof:</u> The properties l_E, \ldots, s_E , 1),2),5),6) are obvious, 3) is a consequence of 4), because the onepoint space can be isometrically embedded into any space from IM. It remains to prove the property 4).

Take (C, γ) , (A, α) , $(B, \beta) \in [M]$, $f: (C, \gamma) \longrightarrow (A, \alpha)$, $g: (C, \gamma) \longrightarrow (B, \beta)$ isometric embeddings. Define on the set $F = C \vee A - f[C] \vee B - g[C]$ the function f of

two variables in the following way:

$$\beta'(x,y) = \beta(x,y) \quad \text{for } x,y \in \mathbb{C}$$

$$\beta(x,y) = \alpha(x,y) \quad \text{for } x,y \in A-f[\mathbb{C}]$$

$$\beta(x,y) = \beta(x,y) \quad \text{for } x,y \in B-g[\mathbb{C}]$$

$$\beta(x,y) = \alpha(fx,y) \quad \text{for } x \in \mathbb{C}, y \in A-f[\mathbb{C}]$$

$$\beta(x,y) = \beta(gx,y) \quad \text{for } x \in \mathbb{C}, y \in B-g[\mathbb{C}]$$

$$\beta(x,y) = \inf_{w \in \mathbb{C}} \{\alpha(x,fw) + \beta(gw,y)\} \quad \text{for } x \in A-f[\mathbb{C}]$$

$$\gamma \in B-g[\mathbb{C}]$$

The rest will be defined symetrically.

One can easily see that \int_{0}^{y} is a pseudometric on the set D. Only the proof of the triangular inequality is slightly unpleasant because of many possibilities which is to take into account.

Now we can define $f_1: A \longrightarrow D$ and $g_1: B \longrightarrow D$ in this way:

$$f_1a = a$$
 for $a \in A-f[C]$
= $f^{-1}a$ for $a \in f[C]$

 g_1 will be defined analogously. Of course, f_1, g_1 are isometric embeddings with respect to corresponding pseudometrics and $f_1f = g_1g_2$.

Applying the general theorem we obtain the following:

Corollary: Let α be a cardinal number, $\alpha = \alpha^{\frac{\lambda}{2}} \ge 2^{\ell_0}$. Then there is unique α - universal and α - homogeneous pseudometric space $P^{(\alpha)}$ of the cardinality α .

Proof: There is

$$|I(IM_x)| \leq \sum_{\beta < \alpha} (2^{\omega})^{\beta *_{\beta} \beta} \leq \sum_{\beta < \alpha} \alpha^{\beta} = \alpha^{\alpha} = \alpha$$

at the terem 'polics.

Now we look ho this statement applies to the case of metric spaces in uniform spaces.

Theorem: Let ∞ be a cardin'l number, $\alpha = \alpha^{\infty} \ge 2^{\omega}$. Then there is

 α = univers 1 and α - homogeneous metric space $x^{(\alpha)}$ of cardinality α .

Proof: "c put $M^{(x)}$ the associated metric space to $P^{(x)}$. Observe that an isometric embedding of a metric space N into $P^{(x)}$ implies the isometric embedding of N into $M^{(x)}$, hence $M^{(x)}$ is α - universal of cardinality α . From the functorial nature of making a modiated metric spaces, good isomorphisms of $P^{(x)}$ translate to good isomorphisms of $M^{(x)}$, hence $M^{(x)}$.

For a uniform 'pac X, the uniform weight of X is the smallest car inality of basis of uniform covers of X. For an infinite cardinal number K we shall denote U(K) the class of all (separated) uniform spaces having the uniform weight at most K. Theo em: For $\alpha = \alpha^2 \ge 1 \le K < \alpha$ cardinal

Theo em: For $\alpha = 0$ \geq $1 \leq K < \alpha$ cardinal numbers, there is $\alpha - ni$ ersa in U(K) niform space of cardinality α .

<u>Proof:</u> For $K = \omega$ take $L^{(x)}$ with its let riple unipormity, for $> \omega$ exists the union pro-

duct $(M^{(\alpha)})^K$. For any $X \in U(K)$, $|X| \leq \alpha$ there are $\ell < K$ metric with $|M_{\ell}| \leq |X|$ for all ℓ , such that X is a subspace of $|M_{\ell}| = |M_{\ell}|$. All M_{ℓ} can be embed ded into $M^{(\alpha)}$, hence $|M_{\ell}| = |M_{\ell}|$ is a subspace of $(M^{(\alpha)})^K$, hence $(M^{(\alpha)})^K$ is α universal in U(K). Taking into account the assumption on α , $\alpha = \alpha$ hence the cardinality of $(M^{(\alpha)})^K$ is α .

Remarks: 1) The classes U(K) are not generalized Jónsson classes, hence as a consequence of the general theory we can hardly obtain better results.

- 2) It is a classical result that every metric space of cardinality at most α can be iso metrically embedded into the space $l_{\infty}(\alpha)$, hence $l_{\infty}(\alpha)$ is α universal metric space of cardinality 2^{α} . Our theorem gives a better result, assuming that α is of special sort.
- 3) How strong is the condition $\alpha = \alpha^2$? Generally it is strong. But assuming GCH (generalized continuum hypothesis) any isolated cardinal number has the property.

References:

[1] Comfort W.W., Negrepontis S.: The theory of ultrafilters

Springer - Verlag 1974