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Inversion closed uniform spaces have the Daniell property

M. Zahradnik

Definition 1, A uniform space X is inversa on closed iff
for each positive uniformly continuous function f the function

«%— is uniformly continuous.

Definition 2 A uniform space X has the Daniell property
iff each family {fn} of uniformly continuous functions such
that 12 an 0 1is uniformly equicontinuous.

‘It can be shown (see [1]) that the Daniell property of X implies
that X is inversion closed. It is the aim of this note to prove
the converse statemente.

Proposition. Any inversion closed space X has the Daniell
property.

Proof: Let 4f % be a family of uniformly con-

n’n=l ,2’..0
tinuou s functions such that 12 f N0 . We have to show that
ifni is uniformly equicontinuous., It is possible to assume that |
I>¢f (x) >'fn+l(x) for each e X and n =1,2,... » Define
a function f, for each t e <0,c0) as follows:

£4lx) =s8.f ,(x) + (1 -8) £ (x) where s =t - [t], n =Ct]

n+l
(we put £, =1 ). Obviously f, are uniformly continuous func-

tions,
We shall show that the family 4f, } is uniformly equicontinuous.
For each J” positive, o £ 1, consider the function

(x) = inf {t3.
éd‘ X 1’t(x)".-:.-¢$~

Lemma. Each &, is a cozero function. Then the inversion
closed property of X will imply that &g 1is uniformly conti-

nuous (see [11) .



Proof of Lemma. We have__lsl}-

13 ¢ Me,00) = dx, £.x) > SE
11) 33'€0,0) = dx,2,(x)< I} .

-1
Thus s (A1) is a cozero set for each open Sf) < < 0,c0),

q.eodo
Proof of uniform equicontinuity of 4 L

Notice that for n< tl.é tzé n+1

|ftl(x) - £y, () 2 1ty = ty) £.(x) + Mty =ty )£ (0.

Hence

)y | ftl - ftz l<21t, -t; 1 for each t,t, & (0,c0) .
This implies

(2)  inf | (x) = ¢ <>|>H;""
e X @J",, x-d)‘fﬁ s )

Fix 2>0. Choose a uniformly continuous pseudometric 98 on X

such that

, &
(3) @E(X,y)<1 =—_->|§me(x)— @me(y)|<—2—

for each n = 1,2,... [%] .
It £,(x) - £,(y) 2 2€ , then fi(x)& m& and £,(y) = (n+1)€
holdp for some integer n . This means that @m,e (x) .é t,
@(‘”M)e(y) Z t . Using ('-2) and (3) we get
D.e¥)=t + % eand  @g (x,y) Z.l .
Thus Qg (x,y) <1 dimplies |f.(x) - £,(y)| < 2e for each

t , q.e.d.
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