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-1�1-
Inversion closed uniform spaces have the Daniell p roperty 

M. Zahradník

Definit ion 1. A uniform space X is inversi. on closed itt 

for each positive uniformly continuous function f the f'unction 

i is uniformly continuous.

Definition 2. A uniform space X has the Daniell pro�rty 

iff each :family -{fn 1 of uniformly continuous functions such 

that 1 z. fn � O is unif'ormly equicontinuous. 

It can be ahown (see Cl]) that the Daniell pr operty of r implies 

that X is inversion c losed. It is the aim of this note to prove 

t he conv ers e st at eme nt. 

Proposition. Any inversion closed space X has the Daniell 

property. 

Pro of': Let -{ f 1 be a f' amily of' unif ormly con-
n, n=l, 2, •.• 

tinuou
-'

s functions such that 1 � f'n � O • We have to show that 

-if n J is unif'ormly equicont inuous .• It is possible to assume that 

l > fn(x) >:rn+l(x) for each x� X and n = 1,2, ••• • Define

a :func ti on :ft for each t e < o,ro) as follows:.

tt�x) = s.f'n+l Cx) + Cl - s) f'n(x) where s = t - Ct], n = C:t]

(we put f'
0 

:: 1 ). Obv iously :ft are uniformly continuous func­

tions. 

We shall show that the f'amily if't} is uniformly equicontinuous.

Por each ď positive, rJ � 1, consider the funct ion 

� Ó (X) = inf { t j • 
ft (x)�c 

Lemma. Each !\, is a cozero function. Then the in11ersion 

closed property of X w.1.11 imply that id" is uniformly conti­

nuous (see (l]). 



-!l.9f­Proof of Lemma. We have 

i) <I>;ř-1 {c,oo) = ix, f'
0

{x) > o 1 ,

ii) �i"' <o,c>"= �x,f'
0

{x)<Óf •

Thus � ď'-, (.Q.) is a cozero set f'or each open .n c < O,�), 

q.e.d.

Proof of unif'orm equicontinuity of' -f f't l :

Notice that f'or n-6 t1 � t2. � n + l

I :f't Cx) - :f't {x) I � I t2 - t1 I :f'n(x) + I t 2' - t1 l f'n+l (x) •
l 2 

Hence 

(1) ll f't - :f't li� 2 l t2 - t1 I f'or each t1,t2 e Co, co) •
l 2 

This implies 

(2) 
I{·-&; I

inf \ �O: (x) - q)� Cx) I �
2 x.:X 1 !l 

• 

Fix e > o. Choose a uniformly cont inuous pseudometric g>
e, 

on X 

such that 

(3) . �e (x,y) < 1

for each n = 1,2, ••• 

S, 
==> l �m. e (x) - f ,1\.,e (y) 

I < T

[8] 
I:f' :f't (x) - ft (y) z 2 E, , then ft Cx) • m 6 and :f't (y) � (n + 1) e

holde for séme integer n • This means that �
m.. & Cx) � t,

�Cin+1)e.(y) � t • Using {2) and (J) we get

<p'"' • { y) � t + f and � e ( x, y) 2: 1 •

Thus �e (x ,y) < 1 impliee I :f't (x) - ft (y) I < 2 e :f'or each 
t, q.e.d. 
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