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INTRINSIC CEARACTERIZATION OF DISTAL SPACES

M. Kosina, P. Pték

Intpoduction. This part brings axioms required on

D c exp exp X in order J) be a collection of all uni-
formly discrete families of subsets of X for a uniformity,
A pair (X,D) where D c exf» e¢p R satisfies those
axioms is called a distal space. Given a distal space
(X, D) , we construct the coarsest uniformity ¥ on X a-
mong those which induce D . The space obtained is calledl
di'stally coarse, It is shown the equivalence between the
category of distal spaces (with distally continuous mappings)
and the category of distally coarse spaces. Some equivalent
conditions on a uniform space to be distally coarse are gi-
ven (e.ge (X,U) is distally coarse iff U has a base
consisting nf finite-dimensional coverings). |
Investigations implicitly using the notion of distali-
ty has been done by J.R. Isbell [5] (in connection: with the
dimension theory of uniform spaces) and by Z. Frolfik [4]
(in connection with refinements of the category of uniform
spaces). The last author also kindly brought to our attent-

inn the questions examined here.

Notions gnd results. A qussiuniformity U on a set X

is a family of coverings of X forming a filter in the refine-
ment ordering (see(5]). X with U is a quasiuniform space.
Given a covering L el and a set A c X, St(A, X) deno-
tes the union of all Xoc el meéting A . A family
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{Ax l « e€l} of subsets of X 1is called uniformly dis-

crete of order £ if St (A, T)n A, = 4 provided
that o« % 3 . Such a family is called uniformly discrete

if it 1s uniformly discrete of an order L e U .

Theorem 1, Let (X,U) be s quasiuniform spacee. De-
note by o (1) the collection of all uniformly discrete fa-
milies of subsets of X . The following assertions hold:

2, If {A,B}e ol(U) then AnB=p
Dy The family ol (1) 4s closed under formation

of the distal combinationse. It means, if K = {{ A:‘ lc €1,8,...
o |
...,'(Awl X € I,n’}} is a finite family of elements belong-

ing to d (1) then -(Ca. | ¥ € J} bvelongs to d(U) provi-
ded that, given x € C'K, ), A € C% y %1 ¥ Y5 ,there exist
a R,1<4£ %R £ m and some ooy x) € Iy, oy F Xy

such that o<eA§§’1 , M € Aﬂ;‘ca .

Proof: Let (X,U) be a quasiuniform space. If
{C,p | ¥€ 3% is a distal combination of {A:: lc € Ig % >
A€l £m and if £ A‘:Z' | < € Ig 3 1s discrete of order

X, eU then £ C,y | € 3% 1is discrete of order
v
N L, . So, B, 1s fulfilled. ), is trivial.
Before getting into the further theorems let us take use

of the following convention. Given a family {A_ | o« € I ¢
of pairwise disJjoint setes, we will write A ==ckeJI A and

call a covering QL assoctated with < A, lcell 1if
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A =+{A_lxel} where K«,"’("A)U,Ax .

Theyrem 2, Suppese that D c expern X  fulfils the
conditions 9,1 ’ @2' o Then there exists a quasiuniformity

UCD) such that D 1is exactly the collectionm of all
U(D) -discrete families of subsets of X  and, for e~
very 1’ with the preceding property, U’ 1is finer than
udp) . '

Proof: Denote by U(D) the quasiuniformity on X
such that a subbase for U(D) consists of all covérings
associated with the families {4 A | x ¢ Tt €D .

Of course, D ¢ (U (D)) . We have to show that

d (UCD))cD . For, let £Cy |y eI} e A (UCD))
be a family discrete of order X = A, N O,Qn... NnQn
where Qg sre the coverings associated with

R
LA | x € I§. we will prove that {Ca,|7e J¢ is a di-
stal combination of K =4{4 A:c l< € 14},...,{A: lx eI, 3%.

Take X € C e nd 4 +

¥ Y 7, @ enote by L  the se ::‘ all
Ry 1% € m such that X belongs to some A < °
Obviously, L 1is nonvoid and for every. R g L there ex-

ists exactly one < (%) such that x « A‘:‘ (%) - There-
fore, St (x,%) = /\ ((X-A ) v AQ‘(“)) (remem-
ber the conventions A"—- o Ak Jo For every L € L

oCeI

& y :
put By =A - Agcp)-Then X - St(x, %) =

= X = N X=Bg)=J By .Since g €X~ St(x,X)

e
we have a k €L such that ¢4 € By ., Thus o e AB for
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some (3 # (k) and therefore dA(U(D)) =D . WD)

is cleé_arly the coarsest such quesiuniformity. The moof is
complete.

The pair (X,D) where X 1is a set and D 1is the
subset of 2xf2 exr X with the properties &, , O, is
called a quasidistal space. A mapping ¢ : (X,D,)—> (Y, D,)
between quasidistal spaces is said to be distally continu-
ous if £ cg""(Ad’) | x €« I3 e _ZD,, whenever

A, |xc€13eD, . Let us denote by @Dt  the ca-
tegory of quasidistal spaces with the distally continuous

mappingse.

: Theorem 3. A mapping ¢: (X, D ) —> (Y,D,) is
- distally continuous if and only if g: (X, U(DI) —> (Y, U(D)
is uniformly continuous. So, the category A Dt 1is iso-
morphic to the full subcategory of @ Umif of distally
coarse quasiuniform spaceé-spaces (X, L) with W)=
=1L . | |

Proof: Suppose ¢ i (X,D4) —> (¥,D,) is distally
_cohtimmus. If & 1is the covering associated with
LA | xelYeD, then @ (Q) 1s associated
with '('qo"'( A&'oc € I3 D, . The remaining part of Theo=-

rem 3 is easy.

A quasidistsl space (X,D) 1s a distal space if it
hes this additional property f()3 8 If A |cel3ed
then there exists a € B, | o € 13eD  such that
Bco>A, forevery c €l and {A |xe I3 u
v {X-B37e€D. The family '*_Boc‘&re I} is calied
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a distal neighbourhood of £ A lox € 13 .

Theorem 4. If ( X,U) is a umiform space then

(X,d(U)) 1s a distal space, If (X,D) is a distal sp.-
ce then (X,UCD)) 1s a uniform space. A base for U (D)
consists of all coverings { X, | o« € 1} satiafying
the following: There exist a covering {A_ |x € I3} and
sets I ,I,,..., 1, such that I= (:_Z I,  and such

‘that for every fv , 1 £ % £m , the family A, |x € L}
belongs to D and € X_ |cc € I, ¥ 1s a distal neighbour- |

‘hood of £ A | < € Ilk, 3 .

Prqof: The first part of the theorem mgy be easily pro-
ved by means of the star-refinement property of uriform spa~-
ces. To prove the second, take a covering Q associated -
ivi_tb a family £ Aac‘ | oc. €1 $ €D . We have a distal
neighbourhood of A, | x € 13 , say {B_ | e I3 .
It is easily seen that the covering B n J where 3 1s
assoclated with £ B | «€I3? and Y 1is associated
with {A, X-B } is a star-refinement of Q .

Let B(D) be the set of all coverings in question.
The system P (D) 1is a base for a quasiuniformity 1L’ .
First, U’ 1s finer than U (D) . Let @ be the cover-
ing associated with 4A, | < e I 3 € D . 1If
{B. lece€ 1? 1is a distal neighbourhood of 1A | x € I3
and £{f {Cy | x € II} is a distal neighbourhood of
{Belc€ 1% then 4C  |x e T3 U {X-A¢f 1a a
covering belonging to U’ which refines @ . '
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The uniformity 1UC(D) 4s finer than U’ . Take a co-

vering 4 X | o &« 13 ¢ B(D) and, according te

the theorem, a covering { A | x € I3} . Put xh =

=4 X, |oceTgdudx- A7,
Sinee {4 A_ |x e 1 }‘ is a covering df X then

m
hf_\d X g refines the covering <€ X, |oc € 13 . By ee-
sy computation, the coverings xb belong to U(D) and

the proof is complete.

Let us denote by Dist the category of distal spa-
ces and distally continuous mappings and by ol: Unif—» Dot
the natural functor which assigns to each uniformity the in-
duced distality. Theorem 4 implies that the category Dt
is isomprphic .to the full subcategory of UniA  of distal- -

ly coarse uniform spaces.

For the further use we need to introduce some subspaces
of the ell-infinity spaces. The ell-infinity space 1.¢(I),
for any set 1 , is the metric space whose points are the
real-valued bounded functions on I with the distance
© (i‘., g)=nuplf-gl . Denote by H(I) the set of all
£e€1,(I) with @ (0,f) £ 4 andwith at most one c €1
auéh‘ that f(ec) > 0 . The symbol ?o’ soc € I denotes the

element of H(I) such that f(ox)=1 and £((3) =0 when-
ever < #* 3. |
Statement 1: If (X,d) is a distal space and if

{B.| < €13 is a distal neighbourhood of {A |ecl’e D
then there exists a distally continuous mapping '
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@:(X,D)—> d(H(I)) such that Be 2 P (@) > Ay

for every c € I and moreover, @(X-B)ec $03} .

The proof of this statement is easy. It may be obtain-
ed from the metrization lemms for uniform spaces and from
Theorem 4 (see also [41). The direct roof may be got by a
modi fication of the Urysohn ‘s procedure.

Statement 2:¢ For a distal space ( X,D) the unifor-

mity U(D) 1is the coarsest uniformity among those which
makes every distally continuous mapping from (X,D) inte
H(X) uniformly continuous. |

Proof: Denote by 1’ the described uniformity. First,
U’ is finer than UCD) ., If O is the covering associa-

tedwith 4{A | x elled andif By [ e 13
is a distal neighbourhood of { A, |x € 1§ then the cover-
ing {B, |lxeli§ u IX-A3 'belongsto'll' and

refines @ .

The uniformity UCD) 4is finer than U’ . Observe
thet in H(X) , uniform coverings of the type h\”_j,' Pa

- where every (Pk is uniformly discrete family form a base
for uniform coverings of H(X) .

Now, to introduce the uniform complexes is necessary.

Given an abstract simplicial complex Kav , the uniform comp-

lex K is » subspace of ‘L,o(Ka') whose points are.thoae
non-negative functions f on the vertices of Ka such that,
for some simplex 4 of Ko, , f(#)=0 for all vertices o

not in » a‘ndwzlb_f(nr) = 4. The dimension of a simplex is
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sne less than the number of vertices, the dimension of a
crmplex (abstract or uniform) 1s the least upper bound inm
{0,1,...,00 % of the dimensions of its simplexes. For‘.
uniform crmplexes, the dimension in the sense aboire is the
same as the big uniform dimension A (fo details cén-

cerning uniform complexes ennsult [5]).

Statement 33 For each set I , H(I) 1s a ene-di-
mensinonal uniform complex.

The proof is evident.

Statement 4: Any closed subspace of a pxwduét of fini-

te-dimensional complexes is an inverse limit of finite-di-
mensicrnal subspaces.

The proof is evident,

Recall that a covering £ of X 1is called finite-di-
mensional if, for some natural number m , every Xx e X

belongs to st most m elements of X .

Theorem 5. Given a uniformity U on X , the follow-

ing conditions are equivalent:

(1) U 1is distally coarse

(1i) U has a base consisting of ﬁnite—dime_neibnal cover-
ings | | |
(111) (X, U ) 4s a subspace of a product of finite-dimen-
sional complexes |

(iv} The completion of (X ,l) 1is an inverse limit of fi-
nite-dimensional uniform complexes.

Proof: (1) implies (i11): It follows immediately from
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Theorem 3. ,
(i1) ioplies (i): Let £ X, | x € I 3§  be a finite-dimen-

sional covering. Take a strict strinkage of £ X, | « € I }
i.e., a uniform covering { Z,  |ox ¢ I} such that
St(Zy,,Y) c Xqo for some uniform eovering ¥ , Of

course, 4 2, | x € 1} is alse finite-dimensional.
Therefore there exists a uniform covering ° which refi-
nes <« Z“ ] € I § and it is a finite union of uniformly
discrete ‘sub’coilecti’orm- (see [5], pe 67). It is clear that
a suitable uniform neighbourhbod of P refines £ X, 1o €
€ I 3 . Now, the proof of this implication follows
from Theorem 4.

(1) implies (iii): It follows from Statement 2 and 3.
(i1i) implies (iv): It follows from Statement 4 because if
X .,’l.l) is a subspace of a compiete space w then the
crmpletion of (X, U) is a closed subspace of XU .

(iv) implies (ii): This is trivial.

Remarks.e
A, For uniform spaces and for proximity spaces we can in-
troduce the notions of projective generation and inductive
generation (see [2], p. 679)+ The same notions can be’ in-
troduced for distal spaces aa well, One can prove that the
natural functor preserves inductive generation and need
not preserve pro jective generation. In this connection the

following question seems to be of interest:

Problem: Find two uniformities on a set X , say U, »
U, , so that d(L)=d(U,) but d(lU,Aly) % o (L,) .
Here A 1is the greatest lower bound in the lattice of
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uniformities.For the same for proximity spaces,see[1],[3], [6].

Is the distality ol of a space U already deter-
mined by the proximity ,ﬁ’u and by the collection of all
uniformly discrete families £ X, |oc €I} each X, 1is
a 'one-'poin{: set? No. Let X bé an uncountable set, Let
U,=C(X,UL) have a base consisting of all partitions
with at most countable many elements and let U, = (X,U)
have a base consisting of all partitions as above with at
rost cardinality gfeater than §, - These uniformities 74,
U, have the same properties in question but o U+
+ dU, .

The following questiomvwas impori:ant in the axiematic
development of distal spaces. Let 4 X, |cce I} be a sye~
tem of subsets of X , each X, can be written as a dis-
Joint union of two nonvoid subsets X:c v X:‘ . Suppose
t.hat for each system of upper indexes {4, |ox €I 5
iwe-io,/l} the system <£ X:f | « € I% is uniformly disc~
rete. Is then {X_  |xeIf% uniformly discrete?

A sketch of the counterexample (by P, Simon). Let X
be & disjoint union of Xg ,% € N and let every X con-
sist of 2% disjoint subsets, Xg; , carsl Xgy = 2(2%-1).
Divide all Xg; into two disjoint subsets, say X% i »

| ] 0 1 BV |
and Xﬂ“.’ , and denote Xh-zg%...,a."" X%,‘stiquivak Xgo -

For the illustration a picture:
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. X%
o o (0) o
Xﬁ o o) o o ¥
0 o o o
) 0 ° ~ %4———8——5
o o o A <—§—>
(o} o ‘
fo) o () ¥
(o) (o] (o) v1
Xa K x“¢

First, there exists a covering J of X having the

prn‘pertie's:
a.}Ifo,YﬂE’.‘f,voc*(B then Yo NY; = #

be Forall Y, € J it holds
1) ¥, c Xz  for some % e N

i1) m&:z

111) ¥, - Xeo ¥ g for every &, + € N

W) Y. - XL B, Y -X g+l , keN .

(=9

c. If neN,we{O,’l?,')_éL,g?.Q*'am v G
then there is ¥_e J  such that Y, N XZ;# 4  and
1-a '

Y, n Xhé + 4 .
In the following picture two points are connected with

the line iff the corresponding two-point set belongs to
J . | |
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"
O\

\&' =

Let A denote the system of all collections M such

(¢

that for every M,  exactly one half of X, ;. belongs
to M . Given M € A , define a covering %y as foll-
ows:

1) Xy <Y

i1) For every x € X , St (x, L,y ) meets at
mos t one set belonging to M . | '

i11) If X is a covering, Ly < T < ¥ then
there is a set Z, € ¥  which meets at least two sets belong-
ing te M .

Now, the system € L4, | M €A} forms a subbase for a
unifermity U on the set X and, in this uniformity, eve-
ry M s -A.  is auniformly ‘discre'}te coilection. It remains
to show that { Xgo. | &k € N, 14 < 2® 3 is not uni-
formly discrete but it is not b@céuse every covering XL e ll-
contains a two-point set (proef by induction).

B, The distally coarse spaces form a reflective subcategory
- of uniform spaces, Denote again by all the reﬂection ‘of a
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cpace % . It has for a buse the finite-dimensional cover-

1ngé of U .

The functor o preserves subspaces, i.e., if %, 18 a
subspace of Y then d U, is a subspace of A% . It
follows immediately from this lemma: If 9%, 1is a subspace
of L and if X, 1is a m -dimensional uniform covering of
4 then there exists an m +1 ~dimensional uniform cove-

ring X of U such that the trace of £ on U, refimes

X, -

The proof of the lemma is not difficult.

For the totally bounded reflection 41.° we have the
formila: £°U = U v £°t, U . (Here t, 1is
the fine co~-reflection and the symbol ~ 1is that of the
least upper bound in the lattice of uniformities on a set.)
The similar formula for o , namely d% = U v dat, w o,
dnes not hold. To exhibit if, note the following

Proposition 13 For a uni.fo‘rm space U , 6 (dU) =
= d(dU) where A means the big and J° the small
unifrrm dimension.

The proof can be obtained from Theorem 5, p. 79 in [5]1.

Proposition 2: There exists a uniform space U= (X, L)
such that the following holds:
i) X 1is countable
11) U + U |
111) t,%  1is the discrete uniformity.

Proof: There exists a separable uniform space 7 =mueh
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thet to,?”  1s discrete and A¥'= w0, U= 0 (see

[5), pe 79)e U 18 a countable dense subapace of 7 .

If U 1is from Propesition 2 then U v dt, U = U4+
£ dlU .

This space 2 can be also used to demonstrate that
the formula 42 (¥ x p°U) = 42-’(‘2/') x #°(7')  holding
for each space 7' does not hold for diatal reflection.
(The proof is easy because of the countability o % .)

Finally, perhaps the most interesting difference betwe-
en h° and o . If U=(X,U) is a space such that for
V=(X,V), £2(U) = £°(V) implies thet V 1s coars-
er than U , then YU 1is proximally fine, i.e., for every
space W. y 9t AU —> W is uniformly conti-
nuous iff @ s L —» Y  is. It was established by M, Hu-
Sek that such a statement does not hold for the distal ref-
lection. In fact, it was shown that for every space % the-
re 1s a space %  with the properties:

~

1) U is distally unique. It means, if 7 =+ ’Z’Z then
v + dl .
11) U 1is a quotient space of & .

This construction is in this publication on the page

113,
Now, to exhibit a space in question it suffices to take

the space UL for a space U ’ U 1is net fineat among tho-
se uniform spaces having the distality d U (use that the
distally fine spaces form a coreflectiye subcategory ef

Unif ).
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