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DIMENSIONS AND PARTITIONS OF UNITY

Jan HEJQMAN

A characterization of covering dimension by means of parti-
tions of unity is given. Namely, the dimension can be derived
from values of a certain simple quantitative characteristic of
" the partitions of unity which is closely related to the Lebesgue
number of uniform covers,

Let us begin with the so called large and small unifora
(covering) dimensions Ad amd Jdd of uniform spaces.
Recall their definition. First, if € 4s a collection of sets,
the order of € 1is the least cardinal number, which will be
denoted by otad ‘€ , such that ecaxd Q &£ oed €  whenever
Qc<€, NAQ %= P . Ir X 1s a uniform space then
AdX € - , ddX € m , means that each uniform, each
finite uniform respectively, cover of X o¢an be refined by a
uniform cover whose order is at mst m +41 . Then Ad X , am
similarly Jdol X , is the smallest integer m  for which the
inequality holds. If it holds for no m , we set Ad X = o0 .
¥ X=ff then Ad X =dodX « =4 , We shall use the
foliawing almost evident fact: for dol X & m , the refining
cover may either be supposed finite or not., Notice that the
definition of dol 1s quite similar to the definition of the
topological covering dimension oli:n ¢ open covers are repla=
ced by uniform covers.

If @ e a pesudometric on a saet X , ¢ > 0O then we

put Sy e = iC(x,g)eXnk| @ (x,4) < €} ; thus S, [ H)
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is the & =-neighbourhood of H &

A partition of unity on a topological space X is a fa=-
mily {f,} of continuous non-negative real-valued functi-
ons on X such that = fox =4 for each x . Given such
a partition of unity, put

= amf 4 €, x3 .
ALF, 3 s suty to

We say that the partition is subordinated to a cover G ,if
the family {oow f, 3 refines @ ; here coxf  denotes
the cozero set of the function f , i.e. coxf=4{xe X|fx+0}.
A partition 4f, % of unity is said to be finite if the fa=-
mily £f, 3} is finite. Let X Dbe a uniform space. A parti-
tion £f, 3 of unity on X dis said to be uniform if each
function €, is uniformly continuous; it is said to be e=
quiuniform if {f,, 3 1is a uniformly equicontinuous family

of functions.

Theorem le Let X be a uniform space, £L  be the
collection of all uniform covers of X . For G in L. put
c(G)=arunAr{f,? where the supremum is taken over all
equiuniform partitions 5 fad of unify on X which are sub=

ordinated to G . Then
]

Ad X + 1

Q.% c (('*) =
Remark. The formula above is to be understood with the
usual conventions like 41 /o0 = 0 etce If X is void
then some care of a convenient definition of all needed sym=
bols is still in place.
Proof. I. Suppose Ad X £ m < oo . Let ge.ﬂ. 0
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Choose a family {U_} from £ such that it refines

G oend owl{Ust £€m+1 . Let a cover { Hot be a
strict shrinking of { U, % , we may suppose that

SW' [Hy1 c U.a,l for each a for some uniformly continuo-
us pseudometric @ on X . Put, for each x in X and

each a ,

Fax = min {4, vty (x, ANU )Y -

Since -i‘ FaX - oY | &€ (X, 4) , {9,% is a uniformly
equicontinuous family of non-negative functions. Put g)x =
- 2.QpX . Evidently qnpX =41 forxe H,,cong, c Uy 3
thus, for each x »Gax >0 for m+ 41 indices a at
most. Therefore 14 gx £ m+ 4,‘9“- 9—’9'"5(2"“'2)@‘“:’3')
which implies thet ¢ and 1/9  are bounded and unif-
ormly continuous. A simple calculation shows that the fa-
mily ¢, % where f, =9, /g 1is uniformly equiconti-
nuous; moreover & f,x =4 . As coxf,= coX g © Uy
this partition of unity is subordinated to G . For each

X 3 fox >0 for m+1 4indices @ at most,

| A | '
%.{-’w.x =1 ,thus €£x 2 o7 for one a at least. As
X was arbitrary, A{f,3} 2 m14 . Thus we have proved
' 1

e(G) 2 . y (G) 2

G) 3 — for each cover G , hencegﬁ c (G

l1.

2 mv i as we

II. Suppose Ad X 2 m , Choose ¥ in £ for
which there is no refinement whose order is at mest m +
+1 . Let {f,% be an arbitfary equiuniform partition of
unity which is subordingted to ¥ . Let us estimate
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1
AL{£,3 . Suppose ALf, % > m . Of course,
i :
Aif,} > —5 * € for some positive € .« This means

-+

for each x € X  there exists a such that fox > —

+ € , Now put, for each a ,

M 1 -
Vwa(»xe)’(|f‘wx>m}, f';={xeX|f‘ax >m+83 .

As 1f, % 1is uniformly equicontinuous, the formula
g (x,4) = sup|fox - foul

defines a uniformly continuous pseudometric on X ., Since
JFR =X eand V>S5, [F,1 for each a , the fami-
ly £V, % is a uniform cover of X . It refines ¥ becau-
se V,ccoxf, . Thus ol {V, ¥ >m+1 , Take a point X

which belongs to more than m + 1 sets V_, . Then f,x >

> for m+2 1indices a at least, hence = f, x >
M+ , a
> /A which is a contradiction. We have proved c (¥ ) &
1 1
~—~———— _th ? c(G) £ '
7 »thus 9% & - which completes the
proof.

Theorem 2, Let X be a uniform space, fl, be the
collection of all finite uniform covers of X . For G in
N, let ¢(G), ¢,(G) be the supremum of A{f, § over
all equiuniform, finite. uniform respectively, partitions
{f,% of unity on X which are éubordinated to G .Then

) I 1
AMf C ) = ( =
g8 ©CF) =gTh Q) = T
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Proof. Repeat the proof of Theorem 1 with f1, in-

stead of L and dol instead of Add § it may be slight-
ly simplified in some pléces. The partition of .unity ob-
tained in the first part of the proof is always finite.
The partition of unity considered in the second part nay
be either arbitrary equiuniform or arbitrary finite uni-

form (which is necessarily equiuniform, too).

Notice that the second equality in the formula in
Theorem 2 also follows from Theorem 1 applied to the to=-
tally bounded modification of X .

Let us present still a similar characterization of

topological covering dimension.

Theorem 3. Let X be a normal topological space,
fL  be the collection of all locally finite open covers
of X , {1, be the collection of all finite open covers
of X « For G in ) let ¢(G), ¢,(G) be the sup-
remum of A{f,} over all, all finite respectively,
partitions £ f, } of unity on X which are subordina=-

ted to G . Then
4

olom X + 1

imf e (Q) = inf c(g,)sq,(gmﬁoco(q,)z

Gen Gen,

Proof. It is again possible to repeat essentially
thé proof of Theorem l. For locally finite covers, the
well=known Dowker theorem (Every locally finite open co-
ver can be refined by a cover with order at most olim X +
+ 41 ) must be used. No pseudometric is neéded, if H, were
closéd the functions ¢q, may be constructad'directly;
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by Va’} is evidently an os;gogover.

In another way,.Theorem 3 also follows from Theorems
1l and 2 if:- X 1is endowed with the fine uniformity. Then
do X = Jd X = dim X . It suffices that £ 1is
only a base of all uniform covers. The equiuniformity of
the partitions of ﬁnity is easy (prove the cont inuity of
the pseudometric @ defined by p(.x,q.)= %Iﬂ,x-f’a%| ),

see also Z. Frolfk, this volume, p. 8 .

Notice that Theorem 3 might be still generalized for
non-normal spaces if a suitable definition of the covering

dimension were used,



