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DIDIISIONS .AlfD Pil!I!IOIS 01'.Ulflff 

Jan REJCIIAII 

A characterization ot co,eri"I 41•na1on by aeane ot parti­

tiona ot unity ia siven. Hamaly, tbe dimenaion can be deri'fed 

trom valuea ot a certain ei■ple qwmtitati'le c_haraoteriatic of 

· the partitiom ot •unity wbiob 1• oloaely related to tbe. Lebesgue
number ot wd.tora oovera.

Let WI begin witb tbe ao called large and amall unitora 

(coverins) d1mena1ona f:r.cj a-Id d'd, . ot unitora apacea. 

lecall their 4etin1tion. Firat, 1:t � 1• a collection ot seta, 

the order ot 'e ia the leaat cardinel number, which will be 

clenoted by � 't , · such tbat CdM41 Q, -' ftd. CC whenewer 

a, c: '(., r'\ a, + I • It X 1a a unitorm epaoe then 
/J d. X 4 ni. , ótt X • 1t1., , meana tb.at each unitorm, each 

tinite unitorm reapectively, oover ot X can be retined by a 
unitorm oover wboae order 1a at mat m. + � • Then Lltl X ; · am 

aim:llarly ďcL X . , 1• the amalleat 1n-teser "" tor which the 

1nequa11ty holde. It it . ho°lde tar no m, , "· aet .dct )( • oo • 

:rt X •, then l1:c:t X • t:f'o., X • - � •. We ehall uee the 

t_oltaw1na almoet e,ident tact t tor d'ct K '- m,.. , tbe retinins . 

. cover may either be euppoeed tintte or not. lot1o.e thet tbe 

4et1n1 tion ot t:lt:L 1a · qm.te 11&1:tlar to tbe detinit ion ot tbe 

topological oo,.erin, 41aeuion cLlmt. 1 open oovere are repla„ 

ced � unitorm oo,er•• 

lt cp 11 1 --••4o•tr1o on I aet · l , t, > O tben we 

put s,,., • � (.e,t,)e X• K·I. f .C.x, ,v.)• e J l thua s,,c. C HJ.
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is the & -neighbourhood of H • 

A partition of· unity on a topological space X is a fa­

mily .(-ť
ev

l of continuous non-negative real-valued functi­

ons on X such that ¼ f"c::t- eX = 1 for each � • Gi11en such 

a partition of unity, put 

� { -f l = -iln,f i � f
a. 

� i 
Q, �ex a., 

We say that the part i ti on is subordinated to a cover 9- , it 

the f'amily .( oo,t., f
"" 

J ref'ines 9, ; bere c.cm--f denotes 

the cozero set of the f'unction .P , 1.e. �f"=.(.)(e Xl+-.x+Ol • 

A partition { f'a.. l of unity is said to ba f'inite if the f'a­

mily 1 f'Q/ l is finite. Let X be a uniform space. A parti­

tion -i f Q., i of' unity on X ia said to be unif'orm if each 

function -f'a, is uni:f'ormly continuous; it is said to be e-

quiuni:f'orm 1f { f Q., l is a uniformly equicontinuous family 

of funct ions. 

Theorem 1. Let X be a uni:f'orm apace, .n. be the 

collection oť all uniform covers: of X • For � in .n put 

c (9,.) =�.a -Í f'a, l where the supremum is taken over all 

equiuniťorm partitionš -i -fQ. l o'f unity on X which are sub­

ordinated to 9,- • Then 

,, 

Remark. The formule above is to be understood with the 

usual conventions like 4 I oo = O etc. It X is void 

then some care ot a convenient definition ot all needed sym­

bole ia still in place. 

Proot. I. Suppose dd X , m, c::. oo o Let Q. e Jl.. " 
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Choose a family -{ U

Q, 
l from .O. such that it refines 

g.. and O"tOL, { U 4 \ É na.+ 1 • Let a cover { H a.. i be a

strict shrinking of .( U ca, 
l , we may suppose that 

s,,., CU4 1 c U. Q, for each Q, for some uniformly continuo-

us pseudometric f on X • Put, for each .x in X and 

each a, ,. 

�a. 
.x = mw,z, -í 4 , ow.,t,

q, 
( � , X , U

Q., 
) } •

Since . I 9-'a, .x - 9'4, 'V- I é f' (.x, 'V-) , .( 9"& l . is a uniformly 

equicontinuous family of non-negative functions. Put g.,�= 

• � (t4
.X • Evidently Q'4,.X = '1 for � • H

a.
, � g,,Q, c: lL., ;

thus, for each .x , g--
ci,

.x > O for m. + 1 indices a,, at

most. Therefore � é 9-.x á m. + ,f, · 1 g..,)( - 9-11- I s C2m.+ 2.) f' C.>t, 1#-)

which implies that 9-- and 1 I 9- are bounded and unit-

ormly c.ontinuous. A simple calculat ion shows that the fa-

mily -{ -fl4 l where f'
a, 

= g,4 / 9- is unif'ormly equiconti-

nuous; more ov er 2. f Q, � = 1 • As oo.t, f4 • � 9'41 c U. a. 
41 

this partition of unity is subordinated to <,- • For each 

x , f'
a,

.x > O for. 111- + 1 indices a, at most, 
lf � f'

ca,
.x • � , thus �� � 

Q,. 171, + " 
.f 

.x was arbi trary, .í\-< f
,., 

l � 
na.+'1

c.(Cj.) � 
,f for each cover 

1)1, + 1 

� m.+1 as well. 

for one Q, at least. As 

• Thus we ha ve prov ed

� , hence ůnf' c ((j.) � 
�•-A 

II. Suppose � oi. X � ,n_ • Choose ?lt in ..a. for

wbich there is no refinement whose order ie at mest m. + 

+ '1 • Let ( f
a, 

1 be an arbitrary equiuniform part ition of 

unity which is subordiruC.ted to 1t • Let us est imate 
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IJ1, + 1
o Of course, 

+ e for some positive e:, • This means

for each �. e X 1 there exists Q., such that fa,.x > ,. + nt.+ 

+ e „ Now put, for each a.. , 

V
4, 

= .( .x e X \ f
Q,

� > ,f 1 J , � = .( .>< e X I f Q. .><
. IJI.+ 

1 >--+e1.m.+1 

As ,{ f'Q, l is uniformly equicontinuous, the f'ormula 

g, Cx, 11-) = � I +-4 .x - f"4 1,- f 
Q.I 

defines a uniformly cont inuous pseudometric on X • Since 

"-t, � =- X and Va, => s,,'- C F
t:t. 

J for each a, , the fami-

ly { Va. l is a uniform cover of X • It refines 'tJť. bec��� 

se Va, 
c co-x,, f'4 • Thus 06t.Cl -< Vci, l > m. + 1 , Take a point .>< 

which belongs to more than m + 1 ·seta Vq,, • Then i'A. � > 

for m. + 2 indices � at least, hence � -f'4 .>c >
Q, 

:> ,1 which is a contradict ion. We have proved C (�)'

é: � 
- rn. + 1

proof'.

1 , thus 
'i,� C (C,.) � 

m., + -1 which completes the

Theorem 2. Let X be a uniform space, Jl
0 be the 

collection of' all f'inite unif'orm covers of' X • For 9- in 

Jl. 0 
let e C�), C

0 
(�) be the supremum of' A� fQ, J over 

all equiuniform, finite uniform respectively, partitions 

,{ fa,, t of' unity on X which are subordinated to � .Then 

Á.tnf'cC(i.)=-.inf:c
0

(�)e 1 

(ic Ao <;.• .ll.o del X + 1 
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Proof. Repeat the proof of Theorem 1 with Jl O in-

s tead of ..n.. and d"ol i nstead of .d d. · ; it .may be slight­

ly simplified in some places. The partition of unity ob­

tained in the first part of the proof is alwsys finite. 

The partition of unity considered in the second part may 

be either arbitrary equiuniform or arbitrary finite uni­

f'orm.(which ia necessarily equiunif'orm, too). 

Notic e that the second equality in the f'ormula in 

Theorem 2 also foll ows from Theorem l applied to the to-

t ally bounded modifi cat ion of X • 

Let us present still a similar characterization oť 

topological covering dimensio n. 

Theorem 3. Let· .X be a normal topolo gical space, 

.n. be the collection of all locally finite open covers 

of' X J ..no be the colle ction of' all f'in ite open covers 

ot X • For c,.. in 

remum of �.(fa., l 

part it ions .( fa.. l 

ted to � • Then 

.n. let C ( � ) , C
0 

( (j..) be the sup-

over all, all finite respectively, 

of unity on X whi ch are subordina-

• 

Proof. It is again possible to repeat essentially 

the proof of Theerem 1. For locally finite covers, the 

well-known Dowker theorem (Every locally f inite open co­

ver can be refined by a cover wi th order at most ctům X+ 

+ � ) m.ust be used. No pseudometric is neěded, if' Ha, were

closed the ·runctions �Q, may be constructed clirectly;
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is evidently an open cover. 

In another way, Theorem 3 also follows from Theorems 

1 and 2 if, X is endowed with the fine uniformity. Then 

,1c,l X = d'd X = cLům. X „ It suffices that .Q. is 

only a base of all uniform covers. The equiuni�ormity of 

the partiti ons of unity is easy (prove the continuity of 

the pseudometric f' defined by f' ("',-v,) = llf
6

x - �
a.

111- I ) , 

see also z. Frolík, this volume, P• 8. 

Notice that Theorem 3 might be still generalized for 

non-normal spaces if a suitable definition of the covering 

dimension were used. 


