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A LEMMA ON FINITE-DIMENSIONAL COVERS

Jan HEJCMAN

The aim of this note is to prove a lemma which ena~
bles every uniform cover with finite order to be refined
by a uniform cover consisting of finite uniformly discre-
te subcollections. This lemma, in a slightly weaker form
(for one cover of the all space) is well-known, the u=
sual proof uses the technic of uniform complexes - see
€.8¢ JeR. Isbéll: Uniform spaces, IV. 25, The proof pre=-
sented below uses élementary properties of pseudometrics
and @ more general assertion is obtained quite easily.
Therefore the lemma is formulated for pseudometric spa=-
ces; its corollary is, in fact, the lemma in a form

which seems more usable for uniform spaces.

Remember one theorem on uniform dimensions only,
the proof of which uses essentislly the lemma. Let X
be a uniform space, dd X < ®@ 3 then each finite-di-
mensional uniform cover of X can be refined by & uni-
form cover with the order less or equal to T X +1 «
Corollary: Finite Ad X implies dd X = dd X -

Let (X,%U) be a uniform space ( & is the set of
entourages), WL € U, Z ¢ X , A collection G of suB-
sets of X is eadd to be a U -cover of Z , if for
each point x of Z there is8 G in G such thaf
ULxl1 AZ c G 3 G 18 U -discrete if WI[GI N
AH=( forariy G ,H from G ,G+H.,If @ is
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& pseudometric onaset X 4, € >0 then S@Ea f(x,y)e

e Xx X ]@(x,'y-)4 €% .In a pseudometric space (X,p), S‘,’;-
covers are called simply € =-covers, S@’z -discrete col-
lections are called € -discrete. Given a collection §-
of sets, the order of G 1is

owd § = supfcawll|Qc G, NA % 73 .

Now, let us formulate and prove the lemma,.

Lemma. Let (X, ©) be a pseudometric space, m be
a nstural number. If a collection ¥ ‘of subsets of X is

@ 4-cover of aset Zc X auand ovd ¥ € . for some na-

tural £ £ m  then there exist Cy= -discrete collec-
. m '

Y ,
tions ’3‘('«,, yoecy x,f,, such that 1,‘L._J,’ ZlC,,-‘ is o pooy -COo-

ver of Z and refines 3 .

Proof, We may suppose that card ¥ > and Z\H &
# @ for each H 4n ¥ , otherwise the assertion would
be evident. Put, for any QA c ¥ with 1£cand A & 1,

Kw=4er|GeQ,, He #\ Q0 =>

' A
= lint(X,ZNG) > dist (x, ZNH) + *5-;’:’} .

Let X, be the collection of all K,  with cand A = v
for + =4,...,f ; we shall show that these % have the

required properties.
If Qe ¥ ,BcH, At B, ol A =cad B =4,

choose G in A\ and H in BN QA.Llet x s K
/g,eK:B . Then we have
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dint (x, Z\NG) > odist (x, Z\H) + 1

3m

?

oist (a4, ZNH) > olist (g, ZNG) + ——

3m

Suppose so.(x,n;)< 3:1”:— , then

dint (ap, Z\ W) édbat(x_,Z\-H)+§—:;< dirt (x,Z\G) &
& clist (44, Z\G)+ 3—:7-"<d.4'M(ly«,Z\l~l)

4

which is a contradiction; thus @(x,4) 2 3

and

-discrete.

')C;_» are

Tm

Given a point x of Z , choose G in ¥ such
that S, 4lx1 A Zc G , Hence dist(x,Z\NG) Zz 1. The
numbers olist (x,Z\H) are positive for at most

sets H from ¥ , one is at least 1 and st most f -

-1 of them are less than 1 , thus a gap with length

—»:T must appear. Therefore there exista (L ¢ ¥ with
1¢écand Q& such that
M{o(iyt(x,Z\H)[HediZmax{dIot(.x,Z\H)IvHeZe\ah%.

Now, clearly, if 4 & Z, Q(Q,QR —3-—:;— then 4 €

-cover of Z and it

eKa.Thus Gx- is s

E XL e

refines # because Kac H forany H in Q@ .

Corollary. Let ( X, W) be a uniform space. For

each V in % and a natural mumber m  there exists



W in % with the following property. If a collection

9 of subsets of X is a V =cover of aset Zc X and
ovd ¥ & o for some natural 42 & m then there ex~
it W ~-discrete collections ¥y,.~, %,  such that
. 31s a W-cover of Z and refines # .

&€Y-

)
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