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CONCERNING PRODUCTS OF PROXIMALLY PINE UNIPORM SPACES

véra KUREOVA~POHLOVA

A aniform space is called proximally fine if every
proximally continuous mapping from this space to an arbi-
trary uniform space is uniformly continuous,

In [H] M, HuSek has proved that a product of an arbi-
trary system of proximally fine spaces is proximally fine
if and only if a product of each of its finite subsystems
is proximally fine. Thus the study of products of proxi-
mally fine spaces reduces to finite products. In lIll,Ilzl
and [P] there has been shown that in some special cases
the product of two proximally fine spaces is proximally
fine. First M, HuSek in [H] found an example of two pro-
ximally fine spaces, the product of wihich is not proxi-
mally fine. Thus the problem arises to characterige the
pairs of proximally fine spaces, the product of which 1is
proximally fine. This note is a contribution to this
problem. The main result is the following: A product of
an arbitrary proximally fine uniform space with a com-
pact uniform space is proximally fine.

I,
"By Umif we denote the category of uniform spaces

and uniformly oontinuous mappings. FPor a uniform space X
we denote by | X| 4ts underlying set, by tX the cor-
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responding topological space, and by d, X the correspon-

ding proximity relation. By 4 x we denote the character
of X , i.e.thdamaliest infinite cardinal number such
that X has a base of its cardinality. If % 18 a cove=-
ring of a set X and Y S X then put UW/VY={UNY,UeUd,
Por arbitrary uniform spaces X, Y we denote by 7y ,

Sy  the projections m:lXx Yi—s 1XI, s iKxYiaIYl,

Recall from [R - 8] that a uniform space A 1is pro-
zimally fine if and only if X is the finest uniformity
on the set X  inducing the proximity d} .

If @ 1is a pseudometric on a set X ,xeX, es>0
then we denote by 'BS" (x,e) the open ball with center
X eand diameter € . By fBgo (e) we denote the covering

(e)=4 8
:69 e

BSD(Y, ﬁ&) =

(x,e),xe X} , Por a subset ¥ of X put

®
,L,ijBga“’e‘) .

For an arbitrary uniform space Y we denote'by 3';,*
the olass of all uniform spaces X such that for an ar-
bitrary proximally oontinuous pseudometric @ on XxVY
and arbitrary e 50 there existe WU e X with
{Uxfgi, Ust,yelYi}= 539,(6) . Put

Pra NIB*, Ve Unis} .

The resson for the introduction of these notions is

olarified by the following easily proved Proposition.

I.1, Proposition, Let X,Y be arbitrary uniform
spaces. Then X x Y 4is proximally fine if and only if
”® *
Xe :Py and Ye (& .
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Proof:t If {Ux{y},UeU, ypelYli< :Bs,(e) and

fixi =V, Ve V,xelkij<By(e) for somse Ue X and Ve
€Y then {LxV,Uel, Ve ¥i< Byi2e).

We point out an evident consequence of the Proposi-

ticn.

I.2, Corollary. If X,Ye P¥* then X x Y 4is pro-
ximally fine.

II,

At the beginning of this section we shall summarige

some results about the class P*

Pirst, we generalize a result from (R - 8],

II,l, Lemma. Let 9 be a pseudometrio on a set X,

€>0 ., Let ix,,ec€ B} and {y, ,c 6B} be families
of points of X indexed by an ordinal number {3 such that

@ (%Xe, 4,)Z € for every «c € 3 o Then there exists
| | .
a cofinal subset I of 3 such that @ (x., 4., )> -

for every o« ,x’e I .
Proof: If for eome oc « (3 either I _-{yefl,

;a(x‘“r%,).é «%—3 or Jo=igel, @ (xp,n,)% -f-;—i' is

a cofinal subset of (3 we are ready since |

€ ‘ o
¢ (xp,py) > o  tor p,7'el, or g, 7'ed, -
Suppon that for every oc ¢ 3 neither I nor Jo 1is

‘a cofinal subset of 3 , Then we can construct by induc-
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tion a cofinal set I = (3 such that 7 ¢ I_u J.  whenever

o <y, €l . Evidently @(x ,4,) > % for eve-

ry <,y €l .

I1,2. Proposition, Let X be a uniform space with
a linearly ordered base., Then X € P ¥ .

Proof:s Let (¥, << ) be a linearly ordered base
for X , For an arbitrary uniform space Y consider a
proximally continuous pseudometric ® on X x ¥ , Sup-
pose that there is some € > 0 with {Uxdigi,UelU,yelVlif
& 3553(9) for every U & fr . Then we have a, , &, e i Xi,
Yy €1Y1 for every U e & with pay,y, <Ly, 4,0) > €
and a, € St (&, ,%) . By II.1 there exists a cofinal sub~-

set &’ of & with gb(<Cb,’L, dfu>, <1fv'4‘«v>) > % for e~

very UL,V e $’. Since &£’ 1is a cofinal subset of &
it follows that {<a, 4y, Ve Bidy, y Ky, 4y Ve &’
This contradicts the assumption that @ 1s a proximally

‘continuous pseudometric on X x VY .

A topological space is called a generalized sequenti-
al space if to every point of a closure of its arbitrary
subset there converges a netof pointg ef this subset index-
ed by an ordinal number, Poljakov (see (P]) proved that e-
very uniform space X with tX compact generalized se-
quential 1s in the class P* . The following is a genera-
lization of his result.

| IX.3, Proposition, Let X be a topologically fine
uniform spaces., If tX 1s a generalized sequential tope-
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logical space then X € P* .

Proof: PFor an arbitrary uniform space Y oconsider
a proximally continuous pseudometric @ om X x Y . Por
€ >0 pat U= (Boe) /(X x {41)).Clearly, Ug
is a normal covering of the set X , If Uy is an inte-
rior covering of tX for every ¢ >_0 , WE have U e X
and hence X e P* , suppose that %g 1is not an interi-
or covering of tX for some ¢ . Then there exists X &
€ i X! such that for every neighbourhood 0" of X we
have X, € 0" and 4, e|Yl with @({Xy,442,{x, yyNZE.
In virtue of the fact that tX 1is a generaligzed sequen-
tial space, we can choose from points X, a net
{Xy, <« €B33% , indexed by an ordinal (3 , oonverging
to x . By II.,1 there exists a cofinal subset I & f3

with 9((0(?,4;&), <x,np,2) > —E— for every «,
e’e I , But this is a contradiction with the proximal
continuity of ® gince

WK, >, 0 €13y yI<x, g Y, celf.

Notice that the proofs of Both Proposition 1I,2
end II,3 are based on the same idea. In the following
we devolop quite a different method for a verification
that a uniform space is in the class P* .

11,4, Lemma. Let X be a proximally fine space and
Y an arb;trary uniform space. If X & ?Y* then the-
re exists a proximally ocontinuous pseudometrio ® on
X x Y, € > 0 and a non-veid Z € X such that
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y?yﬂx(B@Cingl,s) N(Xx4y3)) 1is not a Jy -neigh-

bourhood of Z .

Proof: Consider a proximally continuons pseudomet-
ric @ on XxY and 4 >0 such that {U x4iy},lUe
€ U,peiXly+ 45@(42) for every U e X o Puk

n
%z%éyyx Cﬁgp (E—;)/(Xx{@})) .Clearly, {VU,,me w,?

forms a normal sequence of coverings of ths set |X| with
Yp € X for every m € w, . If 1, are interior cover-
ings of tX for all m € @, then in virtue of the

fact that X 1s proximalnly fine, we have a non-void Z g
c X such that St(Z,7,) is not a a';" -neighbourhood
6!. the set Z for every m e w, o If 1, 1is not an in-
terior covering of tX for some m € w, then there
exists z € |X| such that St(z, U, . ,) 1is not & neigh-
bourhood of z in tX , Hence St{(Z,%,.,) is not a
dy -neighbourhood of the set Z =<{z} . Thus

. n
%f;\y:fr‘x(B@(Zx{rgj,——-m )0 (Xx{y3))1s not a dx -neigh-

bourhood of Z , too.

A topoibgioal space is called o¢ -compact, with o¢
being an arbitrary cardinal, if every system of its non-
void subsets with finite intersection property of the po-

wer at most o has a cluster point,

11,5, Lemma, Let X ©be a uniform space and Y a
proximally fine space such that tA is a y y-compact
topological space., If Y & 3;* then there exists a pro=-
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xinally continuous pseudometiric @ on XxY, e >0 and

non-void set Z € X such that %Qv Ty (B?(Zx{ty,}, g)N
N(X x{g3)) 1is not a Oy ~neighbourhood of Z

Proof: C‘_onaider a proximally continuous pseudomet-
rie @ on XxVY, > 0 such that {4xixV,xelXl,Ve ¥}
& 33?(»2) for every VeV . Let & be a base for Y
of the power at most ’(Y o Put

Koy = {xeiXl, (g, 4y clV) (y’e St (g, V%o Ky, y),<x,4'3) = )}

for every U's & . Then {X,,%ecH§ is a system of non-
void sets with the finite intersection property. Ay —oom-

pactness of tX guarantees the exietencg of some

' < tX | n
ZGU’C}»«XV .  Suppose that 0”’%Qy7rx(3g°(<z”*'>f T)ﬂ

N(X x44})) 18 a neighbourhood of 2z in tX . Then for
every Ue & we have %, 6 0 and 4,,y5 e ¥ such

that g7 @ St(y,.,V) and @ (Cxy , 40, <Xy, ¥y ) 29 «
By the triangle inequality it follows P (<Z,4,), <z, 402

> % tor every Ve & . As the restriction of @ on
{23 AY there 1s a proximally continuous pseudometrio
en the proximally fine space £z }< Y , we have We &

with 423 W< Bo(Z)/(zixY). Then
p((::,:ww), (2, 49) < % which is a contradic-
tion. Thus O’ 1s not s neighbourhood of z in tX , and

hence %/:Y'er(Bé(Zx4q},%—)n(Xx'{@§)) is not a

dy -neighbourhood of the set Z = {27 .

11,8, Theorem. If X 4is a proximally fine separa-
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ted uniform space such that tX 4s a countably compact

topological space then X ¢ P* .

If X 1is a separated uniform space and Y a proxi-
mally fine uniform space such that tX is a 4y -com-

pact topological space then Y e (g"* .

Proof: Suppose that in the first case X ¢ ﬂ';,* for
some uniform space Y and in the latter one X ¢ 9},"‘
for the mentioned Y . Then by the preceding Lemmas we
have in both cases a proximally continuous pseudometric
@ on XxY, e>0 " and non-void Z £ X  such that
Qym’x ( B(,(Zx{fy,i,ﬂ.e) N(X»{y})) 18 not a dy -neigh-

bourhood of Z . We shall construct by induction a se-
quence {X,,m € w, f of subsets of X such that

Zdy X;, (hence X, & 0 ) for every m € v, and an
infinite sequence {X,, m € w,} of points X, €(X| and
a sequence {4, ,m6 w,$ of points gyxpelY| such that
O (KX, Yy, Z x4y, %) 2 2€  for every m € w, . Put
X=X~ f‘\ysrx(Bs,(Zx{M,Qe)ﬂ(Xx{ly—i)) , We have |
Zdy X, . Choose arbitrarily X, e X, end 4, e Yo
such that ©(<x,,4,>, Z x {4s}) = 2€ . If we have
Xis¥s, Y; with the required properties for every b<m,
put _

K= Ko=) a1 (Bo Koty , g >, )N (Xxcdgy$)) o Sinoce (@

4<Mm
is a proximally continuous pseudometric on X x Y and

@Uxs, ghsd,ZxSa453) 2 2¢ it follows that
(Zxhagyh) d,'(,‘y(Bp«o%,qg),e) N (Xx{g3)) ,and hence
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Z~ gy (B (Coty, 2,6 ) (X< gz 5 )) for every L <m o As

Zdy X, - we have Zdy X, . Then we can choose X, €
e Xn and gn €Y such that @(Xy, 4y, Zxiyut) 2 € o
So we obtain an infinite sequence M =4x, ,mew,} € X
end a sequence {4,,m € Wo3 & Y such that

B

‘D
We shall show that we can suppase that P({X,,in )< Ym>)Z

(g Yy EIN(MxS0gy, ) E4x,y,00,% I {4y, § LOr every m e w, -

= 2e& whenever m  mmme w, . Pat

Iy=1{ie w,,0(x%, 4, Xpsthm?) & %}, Maig,,vel,t
for every m € W, . Let us prove that M, has no clus-
ter point in tX for any m € w, by contradiction.
Congider X @« X such that x e mtx for gsome m €
€ W, .Then |
oy, 0, %, 6 My~ 3330, (dxF = {oyy ,x; € M- Ex33) .
As @ is a proximally continuous peeudometrio on XxY
we have i, 4 € I -~ with Xg %5 4 X and

O, 4>, <X, 45 0) < -?21 - Then E(KX;,4;0,{x,4:>) &
49(<.x5,q3>,(xm,'y«,,))+go(<xm,%>,<x;_,%))+p((x,-;,v‘),(x,q?)k E,

and hence BQ,((xé,lw#), €) 1s an open neighbourhood

of <x,43> in t(XxY), 4s

(%, € (M= fxD e 4 37 wa nave

X, ;) € Bo (<4, %47, €) N (Mg~ {x}) ,‘w_“)'t(xxw "

S8ince tX is & T, topological space and

Bp (<x,43 7€ IN(AMp - {x i) 4ngy3) 48 finite we have &
ocontradiotion, Thus, since tX is ocountably oompaot and
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M 1 infinite, we have U In # w, for every fi-

nite K & w, ,We can construct an infinite subeoqu_enoo
{m;, 4 e w,} of w, by induction: m, = 0, cecc 4

mg = min (wy= I Tp )ye00 o Then @«xmkr'%th> ?
Xy, Y, >) = —  vwhenever < % e, kew, . It we
4 4
replace — by €, 1x, v e, byix, mew,} and
£ ‘ ,

‘(%”ac 4 € w,? by €4, , me w,} we obtain the sequences

required,

Parther, for 1 g w, put MI ={x;,4 €l}.VWe shall
verify that for every I € w, there exists a finite K £

As tX is countably compact it suffices to check that

(O WX(BQ Ky, Yy 2, €N (X 0y, 3) B-M-Itx o Since

<m,m>el?

| t
L), m € 13 Iy &,y >,mel} for everyxe le

and ® is proximally continuous on X x Y it follows
that there exist m, mel with @ (Kx, 4, > <X 4, 2)<E .

Now, put Ay ,,= Jl”x(Be«xm,Wn),s)ﬂ(Xx{n‘/m})) . Let

us summarize the properties of {AM’M ,{m,m>e w:} .

(1) Am,zn 1s finite for every m € w,
(11) Am«,&, N Am,h = 0  whenever zr»d-m,m,mé W,

(111) for every I & w, there exists a finite K S 1?

: °
such that “%"K Am,m 2 My
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It is proved in [P) that no such system of sets exists.

(We recall the idea of the proof: By (iii) we have an in-

finite A”‘al’mo for some m,,m,€ w, by (1) m, +m, .

Similarly we obtain m, 4 m, such that m,, m, e

€A —(O,nio-r/mo) and A,

ny s m Ay o =<0, mp4m, )

is infinite. So by induction we can construct sequences

im; 41 e w,3 and {m,,ie w,j such that m, $ m 6 <

Svevn<myFm <. 8nd m;,m, eA whenever i =

Tt ™ he
2k .Por I=as{m; ., v e w,% we have by (iii) a finite

K 1% with o A 21 . But by (1)

fngmg 0 A

" ., =0 and since my, € A, _ . for every

mi c it

% z 3 1t follows that A,m_% ni is finite for

’mé

every 4,3 € @, . This is a contradiction.)

II,7. Corollary. If X and Y are proximally fi-
ne uniform spaces such that tX is gy, -compact T, to-

pological space then Xx Y 1is proximally fine.

Proofs By I1.6 X € P* and Y e SPX* ; hence by
I,1 X xY 4is proximally fine,

II.8. Corollary. If X 1is a proximally fine uni-
form space and Y a eeparated uniform space with tY
being a compact topological space then X < Y is proxi-
mally fine,

I1.9, Remark. At the end of the proof of II.5 we
used a triock which was used by Poljakov (see [P]1) in his
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proof that N x (3N is the finest gerodimensional uni-

form space with the underlying set | Nx 3N| inducing

the proximity 'y, BN ( N denotes the disorete uni-
form space with IN| = w, 3} a uniform space is called
gerodimensional if it has a base formed by partitions),
Prom our results there follows that Nx BN 4is proximal-
ly fine. Thus every uniformisy on the set I Nx N| 4indu-
oing the proximity dy.pN 3 3zerodimensional, This sol-
ves the Poljakov’s problem from [P1: a big proximal dimen-

eion of the proximity dy . AN is equal to zexo,
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