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ONE FOIKLORISTIC LEWMMA ON CARDINAL REFLECTIONS IN UNIF

Pelant Jc

let (X, L) be a uniform space. Let K be & cardi-

nal number. Let LU, 3} coud A< K | be s U-cover

aecA
of X . Dendeby V:4dVglgep some U -cover which

star-refines { U ¥ . For X € X , denote S(x)= talaecAk
& st(x,V)clUgt. For Ye X , denote I(Y)={falacA
& Yc U,) . A mapping xn:X—> A such that x(x) e S(x)

for each X € X 1is called s choice mappinge.

Lemma: There 1is a U -cover £C, 3, o which star-
refines 4 u,,}MA and is refined by V 1if and only if
the following assertions hold:

there extst a choice mapping & and a partition

$B,3,,a Of B such that

) = _ VY =1(L V .
AS’:JBQV&} b%}aw"'(vb) c&f‘\%l( ) =1 ves, 3

- Proof: The necessity of the condition is obvious. Con-
versely, if a choice mapping X and a partition 4B,3.¢A
of B from Lemms exist, then we define {C, 3, oA b¥

'c = U Let x e X.

2 T oS B“,V‘Q» . Clearly, ¥ =< {C_ 3

agA °

IOt (%,4C3, (a0 = MATC ) Ix € 32 MNn(C)s nix) .

Application:
1) Assume that 2°< K for sny oc « K . Each 9 ~co-

ver {U, 3, _,,candA < K, is star-refined by a U -cover
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{€C %.en (See (13.)

- 4

. »
Proof: Consider 4 Vq, Z“GB "-'4 | U.a!a‘A . Define

nik—>A by n(x)=mintalpt(x,4V i eg) c Uy 3 3
we may assume that A 13 an ordinal, For ae A end Jc
c a ,define B(a.J)=<& | 1s the minimal number of A
such that »T(Vy ,4Vg ¥, cadc iy, & I1Vg)n a = 3}3 .
The essumption implies that cand 4(a,d)| JcacAl=caxd A.

It follows from the definition of ~ end B(a,Jd) thst

_ v . d 1(V,) o
niVvyleduiald for any & € B(a, )’henceﬂre?(a,n) 4

2 Judaio U x(Vy) end Lemma applies.
teBlae,d

2) (X, %) 1is & uniform space, { U, i a0 cartA< K
1s 3 U -cover. Let §W % ec =W be a 6 -pointwise fi-

nite U -cover, that refines {U,%,¢A - Then there is

s U -cover {Va, ¢ which refines starwise {ll §, -4

See [2]0
Proof: Choose any mepping ¢: C—> A such that
(-
W, c u%‘t‘-’ - By essumptions, C = ) C, and each collec-

tion { Wy1lc € C, 3} 1s pointwise finite, Consider V =

) *
= '(ng.&cb !% w ’ Assume that C 1s a well-ordered

set, toke C, with the induced ordering. Define x: X —» A
by A (x) =g (c) where c € C 1is the minimal element of
C; such that at (x,4Vy 3) c W and there 1s not
sny point with this property being an element of Cp for

Mh<g, AsW 1s }pointwiee finite and V X W, n(Vy)
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is finite for any &r e B , For Dg %ﬂ(A) define B, =
={beBIni(yd=I3. As w&%(A) » cand A 8nd

D}CJD;' (Vo) = JC&Q: (Vy) y Lemna applies,
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Added in proef: In Application 1, if K= <t ,then 1t
18 enough to suppose _2”6 o for all /3 L ot .



