Vojtěch Rödl

Fineness in the category of all 0-dimensional uniform spaces

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces. , 1975. pp. 139–143.

Persistent URL: http://dml.cz/dmlcz/703123

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

-139Fineness in the category of all O-dimensional uniform
spaces

V. Rödl

Let ∞ be an infinite cardinal. Let (X,\mathcal{U}) be a uniform space. Define $p^{\infty}\mathcal{U}\subset\mathcal{U}$ by $p^{\infty}\mathcal{U}=\{V_0\mid V_0\in\mathcal{U}\ \&\ (\exists\ \{V_i\}_{i=1}^{\infty}\subset\mathcal{U}\ V_{i+1}^{\perp}\succeq V_i\ ,\ i=0,1,2,\ldots)\ \&\ (\operatorname{card} V_i<\infty\ ,\ i=0,1,2,\ldots)\}$. Clearly p^{∞} defines a reflection from UNIF into UNIF.

Definition: Let ${\mathcal K}$ be a subcategory of UNIF, ${\mathcal K}$ be an infinite cardinal.

- 1) A uniform space $(X, \mathcal{U}) \in \mathcal{K}$ is said to be $\mathcal{K} \infty$ -simple if for each uniform space $(X, \mathcal{V}) \in \mathcal{K}$, $p^{\infty} \mathcal{U} = p^{\infty} \mathcal{V}$ implies that $id_{Y}: (X, \mathcal{U}) \longrightarrow (X, \mathcal{V})$ is uniformly continuous.
- 2) A uniform space $(X, \mathcal{U}) \in \mathcal{H}$ is said to be $\mathcal{H} \infty$ -fine if for each uniform space $(Y, \mathcal{V}) \in \mathcal{H}$ a mapping $f: (X, \mathcal{U}) \rightarrow (Y, \mathcal{V})$ is uniformly continous if and only if $f: (X, p^{\infty}\mathcal{U}) \rightarrow (Y, p^{\infty}\mathcal{V})$ is uniformly continuous.

Convention: We shall write ∞ -simple (∞ -fine) instead of UNIF ∞ -simple (UNIF ∞ -fine resp.).

 ∞ -fineness (∞ -simplicity) implies $\mathcal{K}-\infty$ -fineness ($\mathcal{K}-\infty$ -simplicity resp.) for any $\mathcal{K}\subset \text{UNIF}$. Obviously a uniform space (X,\mathcal{U}) is $\mathcal{K}-\infty$ -simple if it is $\mathcal{K}-\infty$ -fine.

Theorem [25 B 22] in [1] asserts that the converse is true for $\alpha = \omega_G$. This theorem is extended in [2] to all inaccessible cardinals α . The question what situation occurs for other cardinals α remains open. As I know there is a conjecture due to Frolik, Hušek, Hager, Kürková and others that for

not inaccessible such a theorem fails to be true. A possible example which could support this feeling for $\alpha = \omega_1$ was mentioned in [2]. Using the method of this construction we are going to construct spaces $(X_{\alpha}, \mathcal{U}_{\alpha}); \alpha > \omega_0$ not inaccessible which are not $\mathcal{O} - \alpha$ -fine but they are $\mathcal{O} - \alpha$ -simple (\mathcal{O} is a category of all zerodimensional uniform spaces).

Construction: Let α , β , γ be infinite cardinals such that $\alpha > \beta > \gamma$ and $\prod_{\xi \in \delta} \xi_1 < \alpha$ for each $\delta < \gamma$ and $\{\xi_2\} < \alpha$. We define a uniform space $(X(\alpha, \beta, \gamma))$, $\mathcal{U}(\alpha, \beta, \gamma)$ by the following way: $X(\alpha, \beta, \gamma) = \alpha \times \beta$ and $\mathcal{U}(\alpha, \beta, \gamma)$ is a set of all partitions $\{\mathcal{U}_a\}_{a \in A}$ of $\alpha \times \beta$ such that there is a partition $\{R_b\}_{b \in B}$ of α , card $B < \alpha$ and for each $b \in B$ there is $M_b \subset \beta$, card $M_b < \gamma$ and a partition $\{V_c\}_{c \in C_b} = V_c$ of R_b , card $C_b < \alpha$ such that a partition

 $V = \bigcup_{b \in B} \{\{(x,y)\} \mid x \in R_b \text{ & } y \in M_b \} \cup \bigcup_{b \in B} \{\{V_c^b \times \{y\}\}\} \mid c \in C_b \text{ & } y \in \beta - M_b \} \text{ refines } \{\mathcal{U}_a\}_{a \in A}.$

 $X(\alpha, \beta, \gamma)$ is obviously a zerodimensional uniform space.

Proposition: Let α , β , γ be like in the construction. Denote by D(k) a uniformly discrete space of cardinality k. Then: 1) $p^{\alpha k}X(\alpha, \beta, \gamma) = p^{\alpha k}D(\alpha) \times D(\beta)$

2) $X(\alpha, \beta, \gamma)$ is not x-fine.

Proof: 1) Consider that $\beta < \infty$ and $\prod_{\xi \in \mathcal{S}} \xi_2 < \infty$ for each $0 < \gamma$ and $\{\xi_2\} \subset \infty$.

2) Take pr: $\alpha \times \beta \rightarrow \infty$ and $D(\infty)$.

Theorem: Let ∞ be a cardinal such that either there exist $\xi < \infty$ and $\tau < \text{cf} \infty$ with $\xi^{\tau} \ge \infty$ or $\text{cf} \infty < \infty$

(i.e. ∞ is not inaccessible). Then there are cardinals β , γ such that $X(\alpha, \beta, \gamma)$ is defined by the construction and it is $0 - \alpha$ -simple.

Proof: I) Suppose there is $\xi = \alpha$ and $\tau < cf \propto$ with $\xi^{\tau} \ge \alpha$ (this case involves isolated cardinals). Put $\gamma = \min \{\tau \mid \text{there is } \xi = \alpha \text{ such that } \xi^{\tau} \ge \alpha \}$. Clearly $\gamma < cf \propto \text{hence } \bigcup_{\ell \in \Gamma} \xi_{\ell} < \infty \text{ for each } \sigma' < \gamma' \text{ and } \xi_{\ell} \ge \alpha \text{ such that } \xi^{\tau} \ge \alpha \}$. We shall prove now that $\chi(\alpha, \beta, \gamma)$ is $C = \alpha - \text{simple}$. Take P a partition of $\alpha \times \beta$. Denote a uniformity generated by $\chi(\alpha, \beta, \gamma) \cup \{ P \}$ by χ' . We are going to show that either $\chi' = \chi(\alpha, \beta, \gamma)$ or $\chi' \ne \chi' = \chi(\alpha, \beta, \gamma) = \chi' \chi(\alpha, \beta, \gamma) = \chi' \chi(\alpha, \beta, \gamma)$. Let us suppose that $\chi' = \chi' \chi(\alpha, \beta, \gamma)$. Put $\chi' = \chi' \chi(\alpha, \beta, \gamma)$ be $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$. Put $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$ be $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$. Put $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$ be $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$. Put $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$ be $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$. Put $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$ be $\chi' \chi = \chi' \chi(\alpha, \beta, \gamma)$.

There are two possibilities:

- 1) $\exists M \subset \alpha$, card $M < \alpha$ $\forall x \in \alpha$ $\exists J \subset \beta$, card $J < \gamma^k$ $\forall k \in \beta$ -J $(x,k) \in at(M \times \{k\}, P^k)$
- 2) $\forall M \in \alpha$, card $M < \alpha \exists x \in \alpha \exists K \in \beta$, card $K \ge \gamma$ $\forall k \in K$ $(x,k) \notin st(M \times \{k\}, P^k)$.

Case 1) Take M c oc from the formula.

For $J \subset \beta$, card $J < \gamma$ define $R_J = \{x : x \in \mathcal{A} \ (x,k) \notin at(M \times \{k\}, P^k) \text{ for each } k \in J\} \& ((x,k) \in at(M \times \{k\}, P^k))$ for each $k \in \beta - J$

 $\{R_{\bf J}\}$ is a partition of ∞ which has at most $\sum_{\tau<\sigma}\beta^{\tau}$ equivalence classes and $\sum_{\tau<\sigma}\beta^{\tau}<\infty$.

Case 2) In this case, we shall find a subset S of oc

-142- such that card S = ∞ and there is a partition $\{T_i\}_{i \in I}$ = = T of $\propto \times \beta$, card I < \propto refined by P such that for any two distinct points x,y of S there is k & & such that $(x,k) \notin st((y,k), T^k)$ (Tk has the same sense as Pk above) and it will contradict the assumption that $p^{\alpha} \mathcal{V} \geq$ $\geq p^{\alpha} \mathcal{U}(\alpha, \beta, \gamma)$

T will be such that $T = \bigcup_{k \in \beta} T^k$ and $T^k = \{\bigcup f_k^{-1}(q)\}_{q \in \beta}$ where fk is a mapping from Pk into B.

We construct simultaneously S and f_k 's by transfinite induct ion.

 ξ -th induction step: Suppose we have defined $s_{\epsilon} \in \infty$ and partial mappings $\varphi_{\mathcal{L}}^{k}: \mathbb{P}^{k} \longrightarrow \beta$ for $\delta < \xi$ such that:

- 1) $\delta_1 = \delta_2 < \xi$ & $\mathcal{U} \in \mathbb{P}^k$ & $\mathcal{G}_{\delta_1}^k$ (\mathcal{U}) is defined then $g_{\mathcal{L}}^{k}(\mathcal{U}) = g_{\mathcal{L}}^{k}(\mathcal{U})$
- 2) φ_{σ}^{k} is defined for $\mathcal{U} \in \mathbb{P}^{k}$ iff there is s_{γ} , $\gamma \leq \sigma$ such that $s, \in \mathcal{U}$
- 3) $\delta_1 < \delta_2 < \xi$ then there is $k \in \beta$ such that $\varphi_{a}^{d_{i}}(\mathcal{U}_{1}) + \varphi_{k}^{d_{i}}(\mathcal{U}_{2})$ where $s_{d_{i}} \in \mathcal{U}_{i} \in \mathbb{P}^{k}$, i = 1, 2. A set $M = \{s_{d}, d < \xi\}$ has cardinality less than ∞ . There exist $x \in \infty$ and $k \in \beta$, card $k \ge \gamma^{\nu}$ such that $(x,k) \notin st (M \times \{k\}, P^k)$ for each $k \in K$. Put $x = s_{\beta}$. As card $K > \gamma'$, $\beta'' \ge \infty$ and card $M \subset \infty$ there is a mapping $\psi: \mathbb{K} \longrightarrow \beta$ such that for any $\gamma < \xi$ there is $k \in K$ such that $\psi(k) + \varphi_{\nu}^{k}(\mathcal{U})$ so $\mathcal{U} \in \mathbb{P}^{k}$. For $k \in K$ define $\varphi_{\epsilon}^{k}(\mathcal{U}) = \psi(k)$. For other \mathcal{U} 's and k's define φ_{ξ}^{k} in any way which does not contradict 1), 2), 3) (it can be done). Proof of I is finished.

- II) If $\xi^{v} < \alpha$ for each $\xi < \alpha$ and $v < cf \alpha$ (cf $\alpha < \alpha$) then we can proceed quite analogously like in I) (for choice $X(\alpha, \beta, \gamma)$ put $\beta = cf \alpha$, $\gamma = cf \alpha$) except the discussed possibilities which are following.
- 1) $\exists M \in \alpha$, $\operatorname{card} M < \alpha$ $\exists \tau_M < \operatorname{cf} \forall x \in \alpha$ $\exists J \in \operatorname{cf} \alpha : x \in \alpha$ $\exists x \in$
- 2) $\forall M \text{ card } M < \infty$ $\forall v < \text{cf} \infty$ $\exists x \in \infty \exists K$ card K > v $\forall k \in K$: $x \notin \text{st} (M, P^k)$

(f_k is to be defined as a mapping from P^k into δ_k where $f(\delta_k)_{k \in cf_\infty}$ is an increasing transfinite sequence such that $\sup \delta_k = \infty$).

Acknowledgment. I am grateful to J. Pelant for his kind help during the final preparation of this paper.

References:

- [1] Čech E.: Topological spaces (revised by Z. Frolik and M. Katětov), Academia, Prague, 1966.
- [2] Kůrkové V.: Fine and bijectively fine uniform spaces, this volume, p. 127-137.