1973-1974

Miroslav HuSek
Reflective and coreflective subcategories of Unif (and Top)

In: Zdenék Frolik (ed.): Seminar Uniform Spaces. , 1975. pp. 113-126.

Persistent URL: http://dml.cz/dmlcz/703121

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
\J http://dml.cz


http://dml.cz/dmlcz/703121
http://dml.cz

-13-
Reflective and coreflective subcategories of Umif

(and Tor )
Miroslav HuB3ek, Praha

V. Kannan in [Ka) investigated subcategories both
reflective and coreflective in categories of topological
spaces. We shall look now at the same problem in the ca-
tegories of uniform spaces; not because of results them-
selves that are not too deep (although interesting) but
because of the methods which use generation of spaces in
subcategories.

We shall use terms and notations as used in .[E]
(thus uniform spaces need not be Hausdorff).

To prove that both reflective and coreflective sub-
category of a category of continuous structures coincide
with the whole category, one must prove that any object
of the category can be obtained from the subcategory by
combining projective and inductive generations, In the
category Ton of all topological spaces and all conti-
nuous mappings, one possible basic construction 15 ex-
pressed e.g. in [C]; by means of this construction (dif-
ferent from that in [(Kal) we are able to prove more ge-
neral results than proved in [Kal. In lmif , the cate-
gory of all uniform spaces and all uniformly continuous
mappings, one may use the idea expressed in the exercise
111,3 of [I] or in 37.A.8 of [&1:

Let {X,UY bve a uniform space, D) and Dy two
uniform spaces with the same underlying set and such that
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foran AcD , the sets A, D-A are proximal in D

and distant in D, . For any U € U put Q(Ll):%D-t—

+ x?x- D; . Then (X,Q& ) is a quotient of szi&bfa(w

under the mapping £ defined as follows
| xit deA
it x,x'e X,deD ,then £f<x,x',d> d
\x’if d&A .

The preceding result can be modified in several ways.
It i8 not necessary to take into account the points of the

diagonal of X x X (we may define Q(lL)= =D+ = Dy,
U"'x x"‘x"u

bat not G(LL)_ =D+ = D, ) The uniformity of
W-nu  XxX-UL

&x may vary from that defined before to that projective-
1y generated by f ; e.g. we can put Gy = %Uf“ @’'cu) ,
where ((l) has the same uﬁderlying get a8 (@ (L) and

a base of ‘its uniformity is composed of the equivalence

uc<x.s<>><1)) v U (<x,x'>xA>“u U «x,x’>x(D-AN?
X X=lL X > X-UL

Or G = imFQ"(UL) ,where G/(L)=(L=D)+UXxX-UxD)
and both L, Xx X - L are endowed with uniformly dis-
orete uniformities.

In all three cases described above, the infimum is in
fact a projective 1limit of a presheaf. The approach by means
of presheaves v-is more convenient when it is difficult to
£ind D and D, belonging to the subcategory. We shall
use .the following modification in the case of Hausdorff
{X,U> . For our purposes it suffices to take D, %o be
a two point disorete space with an underlying set (a, &) .
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Put Q(U) = 2.(@) + 2 (a, ) . ‘The connect-

Ko X=LL

ting mappinge 4uv : Ty — G (V) for W, Ve U,
LecV are |
' <x,x'w>=<x,x'a>
x,x'a> it <x,x">eV
y <X b)-/
\<.xx &> if Cx,x>e Ax X-V.

The underlying set of the projective limit <0,K,-(a'-u})
is the set

Zla)+ Z (a,lr)
1 Xx X-1
X X
and
/511. (x,xfa?=<x,x\a?
x,x7a? if <x,xVell
9'u<xr“”’e’>=/
dot, %500 Hx,xDeXxX-U ,
The uniformity of ax is that projectively generated
by 4 j’u_} . It is almost clear what the quotient mapping
?’:’d’x—><x,u> will be:
$<X,él’,a¢>=\x ’ $<\X,X',IJ’> --'\x’ °
We shall prove the following theorem (all the subd-
categories are supposed to be full and replete):
THEOREM ), Let L be a both reflective and coreflective
subcategory of Unif . Then L = Unif .
THEOREM 2, Let K be a reflective subcategory of Umif

containing all uniformly discrete spaces. If L 48 dothk
reflective and ocoreflective subcategory of K , then

L=K .
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THEOREM 3. Let K be a closed-hereditary reflective sub-

category of Umif . If L 1ies a both reflective and core-
flective subcategory of K , then L = K .
THEOREM 4, Let K be a coreflective subcategory of UmiAf

generated by complete uniformly O -dimensional Hausdorff

spaces. If L is a both reflective and coreflective sub-

category of K o, them L =K .

At first several remarks. Theorem 1 is clearly con-
tained in all the remaining Theorems but we have stated it
here because its proof is simpler than the others., We do
not know whether Theorem 2 is contained in Théorem 3 (even
in its weaker form - see the remark following the proof
of Theorem 3), Examples 1 and 2 will show that Theorems 3
and 4 do not hold if we omit the conditions posed on the

reflective (or coreflective) subcategory K

PROOF of THEOREMS 1 and 2. Clearly, L contains all
uniformly discrete spaces and their products in LInif .We
may take for D a product of uniformly discrete spaces
which is not d_iscrete and for D, the same product endow-
ed with uniformly discrete uniformity. Now, since sums,
projective limits and quotients in L of objeots from L
are the same as in K (or Unif in Theorem 1), it follows
that any object of K belongs to L (it is a quotient of
@” € L in Theorem 2 and of @ in Theorem 1). .’

Notice that we have proved more: Any uniform space is

a quotient of an object of K .
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PROOF of THEOREM 3. If K contains only indiscrete spa-~

ces then the assertion is obvious. Let X be a non-dis-
crete space belonging to K and denote by D a two-point
set. If X 41is Hausdorff, then D with discrete unifor-
mity c'D,, belongs to K as a uniform homeomorph of a
closed subspace of X « If X 1is not Hausdorff then it
is not T, , and, hence, D with indiscrete uniformity &
- belongs to K as a retract of X ; conseduently,

(D, D K because otherwise <D, ®d ) would be a
reflection of ¢(D,D,> 1in K , which is impossible
since K contains a non-indiscrete space.

Fix now a two-point discrete space ], with points
a,X (clearly, D, velongs also to L since L 1is
ooreflective in K ). Let a Hausdorff < X, U > € K be gi-
ven and denote by » a reflector Unif —> K with re-

4~
flections Y —Y o ny . Define

<o,,{41u}ue'ua>=Mm&(tL),u;’uvlucvuueu};
since L 1s reflective and coreflective in K = we have
28(Wel and el ., We shall prove that X 1is a
quotient in Umif of (A under a mapping g and,
thus, that X ©belongs to L . The mapping g will be
in a sense a 1limit of mappings from ){.aCLL) into X .
Pirst we shall define mappings Qu’ 5, (L) —> X like
this ‘

| X if d = o

/
T~ it d &

Por 2 € 0, we define gz = (g, ), x , wherel el

gy (%, x50 =
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is selected in such a way that po e)ch D, it such a

L exists (if Y= )ﬁ,«-)’2 we may take xY = ILY +nYy ),
otherwise Ll is an arbitrary member of U . -The defini-
tion of g 1s correct because if 92z =(xg, s,z as de-
fined, then 9z = ()pg,v)pvz for any Ve U, Vcll , which
follows from the fact that |

K /1 %(a’“)‘xi‘:x-upﬂ "’9’V/)‘ 2(a)+n, w2

It remains to éhow that o _:I.e uniformly continuous becau-
se it is quotient then (ite composition with 4: 8y—> @ ,
the limit of iz,
to the quotient ¥ ). Let U.e'u. Vell, V..V"’ VoVoVe U V

o dy,: a — QWY —> £ B(W)} , equals

is closed in X x X (hence Ve K ). We shall prove that

(g = @) [UI> ((ngy) ey x(ng)on Y TVITet 24, 2,8 5
((an)nvz4, (ng«v)avz‘q)e V5 it 1is easily seen that it suf-
fices to prove <g=z,(xg ), 2>€V foreny z€ B -
Sappose 9z=(n9w)4¢wz for a We V, We U ; we may sup-

pose that f,zexn Zx WP Mz Ew xf?‘x—vD" because other-

wige we could put W=V ; moreover we may suppose fr,x €

€n Z (Ir) because that is the only set where xg., and

"“9‘W may differ. Now, x.g/v/)t, = (w)—nvz (a.)-’-‘—’—t» V—% X

m
and Ww/"v%"f”"v%‘”)“‘" v, , where
Sl xad=<(x,x5, M<x, 2}, > =X, x> and qr; is the
4 -th projection. Since x.ho)w /)L Z (%) =af we

have (x%' ),ﬂ«wz =(nlu)(1¢z )pwzs(nh)ﬁvzs V and, hence,
gy, (g ), 22V .
If an objeot X of K is not Hausdorff then K is
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bireflective in Unif and we can use the spaces @ (iL)

inetead of spaces O (i) and Q@ = W{MQCM)} then.
It remains to prove that the mapping f (see the intro-
duction) is uniformly continuous on & into X and fhia
éan be done by the same methbd as in the preceding proof
of uniform continuity bf g but the procedure is much

eagler.

All we needed in the foregoing proof for the reflec-
tive subcategory K was that if K 1s composed of Haus-
dorff spaces only, then a discrete two-point space be-
longs to K (or equivalently, all compact O -dimension-
al T,-spaces belong to K ) and that any object of K
has a base of its uniformity composed of objects of K .
I do not know whether these conditions imply that K {ie
elosed-hereditary (probadbly not).

PROOF of THEOREM 4, 1t sufflces to prove that eny comp-
lete uniformly (O ~dimensional Hausdorff object < X, U )
of K belongs to L , Let U’ be the base of UL compo-
sed of equivalences and for each LLe U’, f, be the ca~-
nonical mapping on X onto the gquotient X/l (& uniform-
ly discrete space). Let X ——'!—"-> X Dbe 5 reflection
of X in L 3 since X/l belongs to L , any €, has
the unique factorization _?/u via v . PorxenX-S0LX],

Le U, denote V, = ;1L x] . For a fixed x , the

collection 4V, |Ue U} 1e a base for a Cauchy filter
)
F in X end, thas, has a limit gx . If we put ghx = X
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for xe X o, them g:» X— X 4is uniformly continuous,

fu°9=F, forall Le®’ and {f,} projectively
generates X . Consequently, §- 1is a retraction and X

‘belongs to L.

Theorem 4 is the easiest result that can be proved by
the same method. It would be sufficient to suppose that K "
is coreflective in LUnif , K 18 generated by a class of
complete spaces such that any its member is projeotively
generated by Hauédorff members of L_ and the reflections -

S are dense one-to-one mappings.

The next example shows a reflective subcategory K
of Unif that contains a non-trivial both reflective
and 6orefleot1vo subcategory L « In spite of this exam-
ple we know that the conditions on K in Theorem 3 are
too strong (e.g. any reflective subcategory of Umif
composed of oompact Hausdorff spaces has no non-trivial
ocoreflective subcategory).

EXAMPLE 1, Let C be the de Groot s strongly rigid met-
rizable non-compact space, [G], and let 4 be a colleot-
ion of unitormi_fiea on C that is meet-stable in the col-
lection of all uniformities on C . The subcategory C(u)
of Umif composed of all products of uniformities from
s form reflective subcategory of Umif . The proof is
almost the same as the H. Herrlioh s proof that the sub-
oategory of Ton. composed of all powers of C 1s re-
flective in Ton , [H;], [Hy] . We shall mention here
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only necessary changes. Por a uniform space A 1let

ey = {<F<C,U D> If‘.s X—> <C,%> is inductively generating
with respect to u , ¥ is not constant },

X2 TTECC, U o g X <K CCUDI € €y, U cpy= BT

Mh: X—> nX be the reduced product of all f;: X —

h . .
—"<C""<¢,<c,u>>> . Then X}--—-» nX 1s the reflection

of X in C(w) & _

Now, the category ((fine uniformity on C ) is both
reflective and coreflective in ((all uniformities on C )
which is reflective in Umif , Notice that if 7 is the
fine uniformity on C then <C,?” ) 1g the coreflec-
tion of T;(C,'l%)- |

EXAMPLE 2, Let K be the subcategory of UmiAf ocomposed
of uniform spaces < X, > such that

U; e U, U, equivalences —) Nl & w .

Let L Dbe the subcategory of Umif compased of uniform
spaces < X,WU ) seuch that NU € U . It is not dif-
ficult to prove that L and K are coreflective in
Unif and L is bireflective in K . If we put L’ to
be all uniformly discrete spaces, then L’ 4is coreflecti-
ve in Unif  and bireflective in L - this shows that

we cannot omit the condition on completeness in Theorem 4,

The method used to prove Theorem 3 can be also used
to improve results from [Kal., V. Kannan proved there that
if K 48 either a bireflective subcategory of Ton or
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an open-~hereditary coreflective subcategory of Ton gene-

rated by 0 -dimensional spaces, then any both reflective
and coreflective subcategory of K coincides with K .
There is also an example in [(Ka] showing that there exists
a subcategory K of Ton containing a nontrivial both
rot]‘.ect.‘.ve' and coreflective subcategory; the subcategory
K 1s neither reflective nor coreflective in Top - our
Examples 3, 4 will show that such a K can be found co-
reflective or epireflective in Hausdorff spaces.

THEOREM 5, Let K be a reflective subcategory of Totr
.containing a two-point space and such that every X e K is
locally K . Then any both reflective and coreflective
nubcate.gor:, L of K ocoincides with K .,

Proof, If all the two-point spaces from K are in-

discrete then K consists of mdiacreﬁ spaces only and
the asseftion is trivial. If a two-point connected T, -
space belongs to K , then K 1is closed- and open-heredi-
tary and ocontains all (0 -dimensional T, -spaces hence
also T2 spaces with at most one accumulation point.
But these spaces will belong also to L and inductively
gener’ate all Tonp - our assertion follows. It remains
to prove Theorem 5 in the case that all objects of K are
T, -epaces,

Let XeK,AcX,xoez - A, 'leo be the neigh-

borhood base of X, in X members of which belong to K .

Por U e ﬂ.x put Su. = (X~-UW)vu (.xo) with the discrete
0

topology. If U,V e ?on y Ve U , then we define Lm :

:Sv—-> Su
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X It xe X-U

/
™~ .xaifxe(u.-V)u(xo) .

Pat <S,44,3> = Lm LSy, {4y, |Vo U} |Ve tly 3 oleerly,
S-Au(xo), A 1s open discrete in S and 'ZLso.-.-t’tho]'nA.

All the spaces S obtained in just described way for va-

rious A, x, , together with identity mappings into X

inductively generate X . Now define <S’,{if 3> =
=£b_m{»5u,{»6m}§ , Where s 1is the reflector Tofs —

—> K . The space S’ belongs to L because xS, be-
long to L forall Ue Uy . Let g :S;—>X be

where LL 1s selected in such a way that o, xe £ (A-U)
if such a Ll € ’IL“O exists and Ll 1s arbitrary other-

wise (then g% = X )e The oorreotnesa' of this defini-

o
tion of 9, ocan be showm in the same way as in the proof

of Theorem 3. It remains to prove that Q. 1s continuous
(all such mappings q then inductively generate X ).
Let € 8" ; 1t 1 2 € x(A-UL) for a U €U, then

G-n&‘ﬁm(A-ﬂ)J is an open neighborhood of = and

¢/G=(xg )en,/G 1s continuous. If gz =x, and I «
e ’tho,'G'-,fp:: E;xol , then 9}[6]:‘1 - indeed,

it 2’e G,Ve ll, Ve’llxo and fr, z°€ x (A-V) then |

(xg, ) 2 € x(U-V) .

It should be not_ed that the first part of the prece-
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ding proof (till the definition of S’ ) gives another

proof of Theorem 2. in (Kal because a bireflective subca-
tegory K of Torr is hereditary (thus, if nontrivial,
it contains a two-point space angl any ite object is local-
ly K )o The condition that a two-point space beiongu to
K 4is essential only if K c Ton-r1 (otHerwise it obvi-
ously follows from the reflectivity of K in Tor .
EXAMPLE 3, Let K be the category of locally connected
spaces and L. be ocomposed of all spaces the collections
of open or oclosed sets of which coincide., Then both L
and K are coreflective in Ton , [Hy]l, and L is biref-
lective in K , If L‘as{discrete spaces} then L’ 4s co-
reflective in Ton end bireflective in L .

Ift Ke me and K 1is olosed-hereditary refleo-

tive in Top , then K fulfils tHe conditions of Theo-
rem 5. The next example shows that if K c Toru.ra, K is

epireflective (hence closed-hereditary) then yet K may
contain a nontrivial epirefleotive and coreflective sub-
category (an, thus, contains a space whioh ig not local=-

1’ K ).
EXAMPLE 4, Denote by qu,,., the set of all countable

ordinals together with @, endowed with such a topology
that T,  1s an open subspace of Scysq and 8 basis of

0
neighborhoods of ), consists of the sets Cn,o,“JnTw‘u (),
vhere m < w, and T£1 is the set of gll isolated or-

dizals of Ty o The ocategory K is the epireflective
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hull in Ton., of qu.,.‘ (1.e., K 1s composed of all

homeomorphs to closed subspaces of powers ( SQ‘” )“, [Ke))
and L 1is the epireflective hull in To‘n..,.z ~of TQ‘ .
Since T;.,_‘ can be embedded as a closed subspace into

S¢4+4 (onto 1imit countable ordinals), L 1is epiref-

lective in K , It remains to prove that L 1is coreflec~

tive in K . The spaée Tc;1
and the basic thing to show is the following: If X € L ,

1= To, + (w,) belongs to L

/
£i XK —> 5@_'...4 then f: X-———»Taa‘H , 1ee. the set

Aa{-""[o,,] 1s clopen in X , Denote Ag =+‘"’1C§] for
isolated countable § and pick out an X € A o The set
Avu UAf is a neighborhood of x in X and, because
X 4is regular, there is a closed neighborhood F of X

in X , FcAuUA? o Since Fe L , only finite num-
ber of intersections F n AE is nonempty since for any

m < @, , the space Fn Af (homeomorphic to

U
f<n
!E'chn Af)) belongs to L and, therefore, is countably

compact. Now it follows that FA A 1is a neighborhood
of X in F and that A 1is open in X .,

A coreflection of a Ye K in L oan be construoc-

oC

o, +4 be a closed

ted as followss let % : Y —> S

embedding and put ¢Y to be the set [ Y] but with the

topology as the subspace of (T;“,1 +41% » the corefleo-

tionmap ¢g:cY—> Y  be the inverse of h ., We must
prove that any f: X —> ¥ , X eL , ocan be factor-
ized via g . But that follows easily from the preceding
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investigation beocause N o f followed by any projeotion
onto 591 o is oontinuous as a mapping into T .

and, thus, M ef 1is ocontinuous into (T,;"H}" ]

(3
(e)

(8,]

[8,)

(1]

(Xe)

(Ke)
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