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ATOMS IN UNIFORMTTIES

Pelant J., Reiterman J.

Introduction . Everybody knows that all topnlogies on

a given set form a lattice with respect to the order <

*finer then"). One can describe easily atoms in this lat-
tice, i.e. the finest topologies which are strictly coar-
ser thagn the discrete topology on a given set: these atoms
contain the only non-isolated point and reduced neighbor-
hoods of this point form an mltrafilter. As all uniformi-
ties on a given set X alsp form a lattice, one can ex~
pect the guestion about atoms in this lattice. The aim of
this note is to show that more complicated situation oce-
urs in this *uniform" case.

2., Existence of atoms, If % is a uniformly non-

discrete uniformity then there is sn atom 4 with
QA < W . Indeed, it is easily seen that the set of 2all
uniformly non-discrete uniformities which are finer than
U satisfies assumptions of Zorn’s lemma with respect to
the order <4 ., Minimal elements of this set are just the
atoms which are finer thsn % .

Let us introduce two examples of atoms. The fermer is
trivival, the latter is due to P. Simon,
Example 1: Let D = X, card D = 2 . All covers of X .
which are coarser thsn the cover D3} v 44x¥; X € X 3
form a uniformity (., which is an atom. {Proof is obvious.)

Example 2: lLet X = X, v X, be a decomposition of an
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infinite set into two disjoint equipotent subsets. Let

"4‘;: X—=X; , +=4,2 bve bi jections. Let U be an-gl-
trafilter on X . Then covers :
HE L), K luw)d; weU3vdind;xeX3, (Le) y

form a basis for a uniformity {,  which is an atom. (To
be proved below.) -

| 3. Ultraproducts of atoms. Let L be an nltrafilter
on a‘ set‘I .Inetaunlfomity WZ- on a set 1‘ “be gi-

ven for each 4 €1 . Let ns assume for convenience that the

sets X; are pairwise disjoint. Then the covers
Lo {{x,} ;X8 UX43 v :,ké)n;& (Led, P e ;)

form a base Por a uniformity. Ye shall write M= TT?D- s
and we shall szy that M is an ultraproduct of '772~ .
M; =7 for esch + & I , we shall ainm}.y write 'mv-.-ﬂ” .

Proposison:: ¢ M; are atoms so iz M = TT?’Z-

Proof: Let ’ﬂ ‘3 M . Put J= . {1€l, ﬂ/x M 3
clearly ’n/x < m for each %, /X‘ . 1is uniformly
3 _,

discrete for 4 € 1-J . If J €% then MN=M.Ifr J &

U then I-Jel hence M  1is discrete.

v/

Corollary: CL% is an atom, for Q,u =Q, as ea-

sily seen (see Example 1),

4. Proximally non-discrete atoms. A uniformity is pro-

ximelly discrete if it induces the discrete proxlm.ty, iee, if
it contains all finite covers; equiva,lently, all partitions

into twd setse.
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The atom &,  is proximally non-discrete, for the sets

X,, X, are proximl but disjoint (see Example 2). We shall
~show that it is the only example {note that Q. = 1, whe-
re U isa trivial ultraﬁlter).

Progos;tion. Q}l is a proximslly non-discrete atom

iff M 1is isomorphic to Qg for some ultrafider U .
Proof: The part "i#% hag been proved smbove. let 7
be pmmally non-discrete. Then there exist two disjoint
proximsl sets Ay A, . Ye my assume that {A,,A,% 1s
a cover. 4s {Aq, Ay 3 ¢ M , the vniformity
’Il:-‘f‘fu. nA uiii ndt 1 fU, zﬂz’em}

;is‘strictly finer than M .If M is an atom then N
1is ,diacr-ete. Thoe there is a cover W = §U.3. . e m
~such that {1, n A, }siuiA is a co-

ver by one point sets. Then each 1; mmst be at most two
points set: if it is the case one of these points must ba
im 'A,, and the other in A, . The same applies to any .
V<1l .Llt VYVeM star-refine 11 3 then V 1is a
pertition (if » cover is not a martition then StV  con-
" tains a set with at least three elements). We may assume
that A, Az: vV, X are pairwise equipotent. Thus there
are bijections f; : X—= A, , 4 =1,2 such that
V=944x3 3 xeC?u £5F,(x),F(x)3;xeD}
for some C,Dc X . Foreach W< V put F, ixe X ;
16,0, f,(x3eW3 . Obviously F, n F;=F, - for any

W, Z <3V . lence the sets F form a base of a filter
R -on X.1f _3' is an nltrafilier, Fo R 4 then cleurly
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0/4. < ’}11 . As MM is an atom, O,f = /m, .

5. Proximglly discrete atoms. Let § be a filter on -

X . Define s unifomity 0'9- on X ars afnllows:'A cover
il,3,

38 £. If ¥ 1is a principal ultrafilter then %. is
vn*formlv discrete. Otherwise 0’ is a m'cximglly alscre-

se7 belongs to Op  iff there is 1€ 1 with

te zero-dimensional umiformly non—aiscrete miformitv. ,
%- need not be =n atom, even 1 F is ‘an nltraﬁl— -

ter. However, jeach Proximlly discrgte‘atbn ‘refines- §9mg;-

Proroeihon. For any proxhzaa].’!,y discrete dtom 'm the-—‘,',i_
re is an mltrafilter such that ’m 2 B‘?

‘Proof. Denote N :§Ac X3 m/A 15 not uniforml-}t
discretei »
Then. |
(%) AcB, Ae N,m —_:-—'-) Be “‘l! .
Let ¥ be a maximal Nm -filter, i.e., a meximal family
F < Np such that L
(i) for eny A,Be % trere is Ce#F with
CcAnB,
(ii) if Ae¥F 2=nd BelNp,BoA, then Be 5.
hccording to (%), ¥ forms a filter in the ordinary ..err:ea
Morzover, ¥ is an ultrafiiter. Tndeed, let A c X .Cons der

tre following two caces: 1) A n.F N_,m'. fQIy any; Fe ‘?, Put
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R =4AnF,Fe F? . Then R 1isa Ngp -filter

and B 2 F, so that R=F  because of the maximality
fF . Thue Ae§ - |

2) AnFé&Ngy trsome FsF. Then AnG & N
for each 6 € ¥, Gc § . Then necessarily (N-AInBe iy
for these & for the property " K ¢ Np, L & Ny —=
=3 X u L& Ny * charscterizes proximslly discrete uni-
formities (here ve put K=AnB, L =12~ Adan @ so
that K w L =6 ). Now apply 1) changing only A to X-
-A toobtain X-Ae F . | |

To finish the proof, let us observe that M A U
is uniformly non-adiscrete. s 0 1is an atom, M A Up = |
=M , i.e. M T - |
Let us note that any atom 7l  which is an ultraproduct
of another one canmot be of the form &y , hence O
where ML 3 Uz is not an atom. Héwever, we shell con-
struct an nltrafilter ¥ on 2 countatle set N suck
that (fg is an atom. Further we shall Trove that such
ultrafilters coineide with the selective ultrafilters.

(The continuum hypothesis is assumed for the construction.)

=
Constructiont ILet f@p, m < 2 *3 be a well-or—
dered set of all pseudometrics on a countable set N ; let
o be the O~l-metric. e shall construct an inereasing se-~

. *,
quence 3, of filters (m < 2 ° ) such thst, for each

Q

m either %, is @p -Cauchy or %, contsins o (@, -

uniformly discrete set. Then clearly %= U Fpn is an ul-
; : 4

trafilter suck that (p 1is sn atom.

1}.“7Prut 9;;={Acﬁ;ﬂ~4\ is finita 3.
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2) Let #F; have been defined for 4 < m such thst each

R

has a countable bace. Then 3’,,; =i'%3“; haz also a

- /]
countable base, say {A;3;_.4 - ¥e may assume A, 3P Azg}’

A3 ; o re o Chf)DSing Q&SA‘;-A‘i"‘.', ? ‘i‘ = 4,Q, 3, X2l ?

F
o -
we get a set A={Qf.i,},;,=4 such that each infinite subset

[ 4

B of A nmeets every member of F .

Lemma: If {X,®) d4s an infinite pseudometric space
©
then there is an infinite B < X, B=¥x;3;_, such thot

0
=1

either X33 is & @ Cauchy sequence or B 1s o
@ -uniformly discrete subset.

Proof is routine,
Now apply the preceding lemma to (A, %IA Jo Put 3, =

={FcX jthere is C € &, with F5> Gn B3I. Then %,
is either @, ~Cauchy or contains a ®m —uniformly discrete
subset according as the former or the latter case in the
lemma takes place. %, has again a countable base 3nd
ism =5, c %, .

An ultrsfilter F on N is said to be selective iff for

any partition { U 3 of N there is either 4 € 1

2 el
with U; € F or there 8 Fe F meeting each U, ot
.most in one point. Squivalently, 3 is selective iff O’g
is an atom in the lattice of sll zero-dimensional uniformi-
ties on N ., Thus, if 0z 1is an atom then § is a selec-

tive ultrafilter.

The existence of a selective ultrafilter on a countahle
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“set is pmvahle mder the sssumption of the continuwm. mpo-

thesis or Martin’s axiom but there is a modsl of the set
theory (ZFC) in which 5o selective ultrafilter ona comnt-
able set exists.~ ' |
 From certain point of view, the mvestigation of selec-

Aive ultrafiliers on a countadble sét is general enough be-
/éause there 18 no nniform selective ultrafilter on any -
coxmtable nnn-measm-eéble ;anﬁml {a Tilter ¥ onsz set
& issaiﬂtobennifomifeaﬂ:mmberaf ~ las the car-
uinality of the set X 3. |

M_let? heaselectivenltraﬁlternnacnm—
tablesetﬂ Then fﬂ B") is an atom,

Praoof ﬁnlloa fron two following lemmas.

lemmn 1: Let ¥ be a seiecﬁve ultrafilter on N. Let
T=1Y;33; I beapointvis’eﬁnitecoverofﬁ Let MW de
» cover of § vhich star-refines T (W <* V) . Then
there is either 4€J such that V3 € ¥  or there is
Fe? suhthet sti{m,W)n st(m, W)= for
any two distinct yoints m,m of F .

Proof: =%V, }'33 . Suppnse (J,£) 1isa well~
ordered set. We define R5 =f{xe N]bt (x, W) e V_j b |
& Y3’ < 3:ablx,U) ¢ V3 ¥. Clearly < R{%ej is a
partition of N o ¥ 1is selective, hence either there is 3Z
such that R;E ¥ or there is Fe 3 such that cadd Ria

nF=14 for each 4 € J . The proof is finished in the

former case. For the latter case, it 1is enough to consider
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that H,(;g ’Kl') A F is finite fnr each X£ F ( e-.,_~

cause ¥ io poimmse finite). It is clear now - that the
selectivity of & implies there 1339;:19_ 3‘,*‘? 3' s;mh that
st(m,W) A stlm,G) = §  for each two distinct
points of G . k | T

3—'5-%—3 Le‘t S X, ®) be a sepamhle metric ._.pace.
Then s metric unifermity o n ga} ‘hes a basﬁ.,,)«f-.fg;’:iw“' |

by 1ecally f'inite cnvers.v B . : I
: ‘Proof. Let 8 c X be a cmmtable ﬁenaef;setwvfl_;_":j,ff’j,__
£>B andcanaiﬂer%(s} Pntd'—g

Te isa lacally ﬁnite cpen cever ?’ of 1 anch that
£§12)>'F> :B?{cr) . S

Suppose thai: E is the set of 331 positzve mtegers, We de-‘-v

fine f})'ziyg’s; b;r theinﬂuctisn. 1} B {'1 z) E

Agdded in m’wf Lemma 2 is well-krmxm, see {1]

G+1) ‘\;M-s <;,-+4 -0 F gﬂgsgtcg;q»,q) :

Evi-dently N 'V has 311 expected properties,.!* o

6. »Rema-rks

1 Asmﬁﬁptigns of Lemma 2 could be weakened: vd"*netwar ‘-in}
(X, @) 15 3 subset of X from whlch each point has the
distance less than d' ; 'I'he assertion of Lemma 2 is t::'ue
for a metrie snace ( X,5°3 f satisfymg_.: fer uach E. ~0,

there 1s 2 .‘3equence L‘D } i such that 3 ib E —gi S";'

crete‘for e,ac_h- i and U f_D' - _1;s}a_,_‘ J—netmork W
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2) YWe have fully described proximally non-discreie atoms.
dssuming the continuum hypothesis, we have constructed a
proximally discrete atom on a countable set, By means of
ultraprodneis, we get an sxample of a proximally discrete
atom on evary infinite cardinal X so that any uniform
cover contains a membar of tihls cardinelity K

¥e do not kxnow any example of an ztoa which is not iso-
moTRAc to @n mliraproduct of te Oy 's; but the existen-
ce of such an atom seems to dbe very probable. We even do not
know whether every atom is zemdiménsinnal,

3) As we have shown, for any uniformity I on a set A ,
there is an atom 7 with A <€ 2 . Bowever a miformity
is in general Par from being a supremum of a set of atoms.
Indeed, each atom { 4+ R, vefines )  vhere
X=3FcX; enxd X=F < cord X 3, . Thus sny Hamsdores
uniformity, whigh is a supremm of atoms, is topologic=1ly
discrete, We @0 not know whether each topologically discre-

te niformity is s supremm of atoms.
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