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Abstract: In this note, we give an overview of the authors’ paper [6] which
deals with asymptotic consistency of a class of linearly implicit schemes for
the compressible Euler equations. This class is based on a linearization of the
nonlinear fluxes at a reference state and includes the scheme of Feistauer and
Kučera [3] as well as the class of RS-IMEX schemes [8, 5, 1] as special cases.
We prove that the linearization gives an asymptotically consistent solution in
the low-Mach limit under the assumption of a discrete Hilbert expansion. The
existence of the Hilbert expansion is shown under simplifying assumptions.
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1. Introduction

We consider the compressible Euler equations of gas dynamics written in the form
of a first order nonlinear hyperbolic system of partial differential equations

∂tw +∇·f(w) = 0, (1)
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where the non-dimensional state and flux vectors are defined as

w :=


ρ
ρu
ρv
E

 , f :=

 ρu
ρu⊗ u + p

ε2
Id

u(E + p)

 . (2)

By ε we denote a reference Mach number. Here u is the velocity vector u := (u, v);
the equations come along with the dimensionless equation of state:

E =
p

γ − 1
+
ε2

2
ρ|u|2. (3)

It is known that for ε → 0, the solution w converges towards the solution of the
incompressible equations if initial and boundary data are so-called well-prepared, see
Def. 2 and also [7]. We note that the non-dimensional form in (2) and (3) differs from
the standard non-dimensional form by the factors ε2. This results from a different
choice of the reference variables and is more suitable for the analysis of the low-Mach
case. For ease of presentation we will deal with the 2D case.

The system (1) is hyperbolic in the sense that for any unit vector n ∈ R2 and
any w ∈ R4 such that the corresponding density and pressure are positive, the Jaco-
bian matrix f ′(w) ·n is real diagonalizable with eigenvalues λ1(w,n), . . . , λ4(w,n).
It can be shown that the minimal and maximal eigenvalues are O(ε0) and O(ε−1),
respectively, as ε→ 0. This stiff behavior leads to problems with the time discretiza-
tion, e.g. for explicit schemes the CFL condition imposes a small time step of order
O(ε∆x), which becomes infeasible for very small ε. Fully implicit schemes, on the
other hand, necessitate solving large systems of nonlinear equations, whose condi-
tion number deteriorates as ε → 0. Our focus here is on IMEX (implicit-explicit)
schemes, which attempt to split the system into a fast part (treated implicitly) and
a slow part (treated explicitly).

Our goal is to compare asymptotic properties, as ε→ 0 of the scheme [3], which
we call Dolejší-Feistauer-Kučera in this work, with the RS-IMEX scheme presented
in [9]. Although different in type, numerically, both schemes perform very well in
the ε→ 0 limit. For the RS-IMEX scheme, a formal asymptotic consistency analysis
has been given in [4]; no such analysis has been presented for the Dolejší-Feistauer-
Kučera scheme. To this end, we unify the two schemes by constructing a generalized
framework consisting of a class of linearly implicit schemes based on a reference
state. The goal is to prove that the numerical schemes from this class give the
correct solution as ε→ 0, converging to the incompressible limit.

2. Linearly implicit schemes based on a reference state

First, we formulate a unified framework containing both the Dolejší-Feistauer-
Kučera and the RS-IMEX scheme. The scheme consists of a first order difference
approximation of the time derivative in (1) along with a linearization of the nonlinear
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fluxes using a reference state. Let Ω ⊂ R2 be a a bounded domain with Lipschitz
boundary. We define the time partition 0 = t0 < t1 < . . . and choose a reference
state wn

R for each n = 0, 1, . . . .

Definition 1 (Linearly implicit scheme based on a reference state). We seek wn :
Ω→ R4 for n = 0, 1, . . . satisfying

wn+1 −wn

∆t
= −∇·

(
f(wn) + f ′(wn

R)(wn+1 −wn)
)
. (4)

Taking the reference state to be the discretization at time level n, i.e., wn
R = wn,

then (4) reduces to

wn+1 −wn

∆t
= −∇·

(
f ′(wn)wn+1

)
, (5)

since the Euler flux is homogeneous of degree one, i.e. f(w) = f ′(w)w. This is the
basis of the Dolejší-Feistauer-Kučera scheme, proposed in [2, 3].

On the other hand, the scheme (4) can be rewritten in the RS-IMEX form

wn+1 −wn

∆t
= −∇·

(
f̃(wn+1;wn+1

R ) + f̂(wn;wn
R)
)
, (6)

where the stiff and non-stiff fluxes are defined as

f̃(w;wR) := f(wR) + f ′(wR)(w −wR), f̂(w;wR) := f(w)− f̃(w,wR). (7)

This is the basis of the scheme used in [9], where wR is taken as the solution of the

incompressible Euler equations. The motivation is that the Jacobian matrix f̃
′
con-

tains all eigenvalues of order ε−1, hence f̃ is discretized implicitly. The Jacobian f̂
′

contains eigenvalues of order ε0, and f̂ will hence be discretized explicitly.

3. Formal asymptotic expansion

In this section, we analyze the asymptotic preserving properties of the scheme (4)
for the Euler equations. Due to lack of space, the analysis cannot be performed in its
entirety, cf. [6] for details. The purpose here is to demonstrate the basic principles
of performing such an analysis.

Let w := (w1, w2, w3, w4)>, then we can write the Euler fluxes in terms of w as

f 1(w) =


w2

3−γ
2

w2
2

w1
+ 1−γ

2

w2
3

w1
+ γ−1

ε2
w4

w2w3

w1

γw2w4

w1
− ε2(γ−1)

2

w3
2+w2w2

3

w2
1

 , f 2(w) =


w3
w2w3

w1

1−γ
2

w2
2

w1
+ 3−γ

2

w2
3

w1
+ γ−1

ε2
w4

γw3w4

w1
− ε2(γ−1)

2

w2
2w3+w3

3

w2
1

 . (8)

Using this notation, (1) is simply

∂tw + ∂xf 1(w) + ∂yf 2(w) = 0. (9)
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The Jacobi matrices of f 1 and f 2 with respect to w (written in terms of the physical
variables density ρ, momentum ρu and energy E) are given by

f ′1(w) =


0 1 0 0

γ−3
2
u2 + γ−1

2
v2 (3− γ)u (1− γ)v γ−1

ε2

−uv v u 0

−γEu
ρ

+ ε2(γ − 1)u(u2 + v2), γE
ρ
− ε2 γ−1

2
(3u2 + v2), ε2(1− γ)uv, γu

 ,

(10)

f ′2(w) =


0 0 1 0
−uv v u 0

γ−1
2
u2 + γ−3

2
v2 (1− γ)u (3− γ)v γ−1

ε2

−γEv
ρ

+ ε2(γ − 1)v(u2 + v2), ε2(1− γ)uv, γE
ρ
− ε2 γ−1

2
(u2 + 3v2), γv

 .

(11)

We assume that the physical quantities ρ,u, E and p on each time level have a formal
Hilbert expansion w.r.t. ε of the form (written e.g. for ρn)

ρn(x) = ρn(0)(x) + ερn(1)(x) + ε2ρn(2)(x) +O(ε3), (12)

similarly, this is assumed for the reference state wR. The existence of the Hilbert
expansion is proved under simplifying assumptions in [6].

Substituting the Hilbert expansions into (10) and (11) and gathering terms ac-
cording to powers of ε gives the expansion

f ′s(w) = ε−2f ′s,(−2)(w) + ε−1f ′s,(−1)(w) + ε0f ′s,(0)(w) +O(ε), (13)

for s = 1, 2, where

f ′1,(−2)(w) =


0 0 0 0
0 0 0 (γ − 1)
0 0 0 0
0 0 0 0

 , f ′2,(−2)(w) =


0 0 0 0
0 0 0 0
0 0 0 (γ − 1)
0 0 0 0

 (14)

and f ′s,(−1)(w) = 0 for s = 1, 2. Finally, since

1

ρ
=

1

ρ(0)

−
ρ(1)

ρ2
(0)

ε+O(ε2) (15)

due to Taylor expansion, we have

f ′1,(0)(w) =


0 1 0 0

γ−3
2
u2

(0) + γ−1
2
v2

(0), (3− γ)u(0), (1− γ)v(0), 0

−u(0)v(0) v(0) u(0) 0

−γE(0)u(0)
ρ(0)

γE(0)

ρ(0)
0 γu(0)

 , (16)
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f ′2,(0)(w) =


0 0 1 0

−u(0)v(0) v(0) u(0) 0
γ−1

2
u2

(0) + γ−3
2
v2

(0), (1− γ)u(0), (3− γ)v(0), 0

−γE(0)v(0)
ρ(0)

0
γE(0)

ρ(0)
γv(0)

 . (17)

4. Asymptotic consistency analysis

Taking all the expansions (12)–(17) and substituting into the linearized prob-
lem (4), we gather terms according to the powers of ε. One can then proceed to
derive properties of the individual terms in the expansion of the unknowns. From
the ε−2 and ε−1 terms, we get the following lemma.

Lemma 1. The functions En
(0), E

n
(1), p

n
(0) and pn(1) are constant in space for every n.

Proof. By gathering the terms of order ε−2 and ε−1 from (4), we obtain

∇
(
pn(0) + (γ − 1)(En+1

(0) − E
n
(0))
)

= 0, (18)

∇
(
pn(1) + (γ − 1)(En+1

(1) − E
n
(1))
)

= 0. (19)

Taking the ε0 and ε1 terms from the equation of state (3) at time level n gives

En
(0) =

pn(0)

γ − 1
, En

(1) =
pn(1)

γ − 1
. (20)

Substituting into (18) and (19) gives ∇En+1
(0) = ∇En+1

(1) = 0, hence En+1
(0) and En+1

(1)

are constant in space for every n. Equation (20) implies the same for pn+1
(0) and pn+1

(1) .

Lemma 2. Assuming either slip boundary conditions for uR and un for all n or
periodic boundary conditions, the functions En

(0) and pn(0) are constant in space and
independent of n.

Proof. Collecting the ε0 terms of the energy equation, we get

En+1
(0) − En

(0)

∆t
+∇·

((
En

(0) + pn(0)

)
un(0) − γ

ER,(0)uR,(0)

ρR,(0)

(ρn+1
(0) − ρ

n
(0))

+ γ
ER,(0)

ρR,(0)

(ρn+1
(0) un+1

(0) − ρ
n
(0)u

n
(0)) + γuR,(0)(E

n+1
(0) − E

n
(0))

)
= 0. (21)

We integrate (21) over Ω and apply Green’s theorem. Since En
(0) and En+1

(0) are
constant by Lemma 1, we get

|Ω|
En+1

(0) − En
(0)

∆t
+

∫
∂Ω

E·n dσ = 0, (22)
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where E corresponds to the terms under the divergence symbol in (21). Since each
of these terms contains either uR,(0),u

n
(0) or un+1

(0) , all of which have zero normal
component on ∂Ω, the whole boundary integral in (22) vanishes. This is the case of
slip-boundary conditions, for periodic boundary conditions, the boundary integral
vanishes due to spatial periodicity of all the terms. Altogether, (22) then implies
En+1

(0) = En
(0) and (20) implies pn+1

(0) = pn(0).

We wish to prove that the zero order variables from the Hilbert expansion satisfy
the incompressible Euler equations. First, we prove the incompressibility.

Lemma 3. Assume either slip boundary conditions for uR and un for all n or peri-
odic boundary conditions. Let ρn(0) and ρR,(0) be constant in space and let ∇·un(0) =

∇·uR,(0) = 0. Then ρn+1
(0) = ρn(0), i.e., ρn+1

(0) is also constant in space, and ∇·un+1
(0) = 0.

Proof. Collecting the ε0 terms of the mass equation from (4) gives:

ρn+1
(0) − ρn(0)

∆t
+∇· (ρn+1

(0) un+1
(0) ) = 0. (23)

Next, we can simplify the energy equation (21) using Lemma 2 and the assumptions
∇ρn(0) = 0 and ∇·un(0) = ∇·uR,(0) = 0 to obtain

−uR,(0)· ∇(ρn+1
(0) − ρ

n
(0)) +∇· (ρn+1

(0) un+1
(0) ) = 0. (24)

Substituting this equality into the mass equation (23) gives us

ρn+1
(0) − ρn(0)

∆t
+ uR,(0)· ∇

(
ρn+1

(0) − ρ
n
(0)

)
= 0. (25)

Denoting for simplicity % := ρn+1
(0) − ρn(0), we write (25) as

1
∆t
%+ uR,(0)· ∇% = 0. (26)

We wish to prove that % = 0, i.e., that ρn+1
(0) = ρn(0). To this end, we multiply (26)

by % and integrate over Ω:

1

∆t

∫
Ω

%2 dx+

∫
Ω

uR,(0)· ∇% % dx = 0. (27)

We apply Green’s theorem to the second integral to obtain∫
Ω

uR,(0)· ∇% % dx =

∫
∂Ω

uR,(0)·n%2 dσ︸ ︷︷ ︸
=0

−
∫

Ω

∇·uR,(0)%
2 dx︸ ︷︷ ︸

=0

−
∫

Ω

uR,(0)· ∇% % dx, (28)

where the first and second right-hand side terms are zero due to the boundary condi-
tions and the divergence-free assumption on uR,(0), respectively, while the last term
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equals the left-hand side. Therefore, (28) gives us
∫

Ω
uR,(0)· ∇% % dx = 0, which

together with (27) implies

1

∆t

∫
Ω

%2 dx = 0 =⇒ % = 0 a.e. in Ω =⇒ ρn+1
(0) = ρn(0). (29)

This gives the first statement of the Lemma. Since we now know that ∇ρn+1
(0) =

∇ρn(0) = 0, equation (24) simplifies to ∇·un+1
(0) = 0, which completes the proof.

The main result of the analysis is that the lowest order terms in the Hilbert
expansion satisfy the incompressible Euler equations, implicitly discretized in time.

Theorem 4. Let the initial condition satisfy ∇·u0
(0) = 0 and ρ0

(0) being constant in
space. Let the reference solution satisfy ∇·unR,(0) = 0 and ρnR,(0) being constant in
space for all n. Assume either slip boundary conditions for unR and un for all n or

periodic boundary conditions. Then for each n, the pair
(
un+1

(0) , p
n+1
(2) /ρ

n+1
(0)

)
solves

the implicit semi-discrete incompressible Euler equations

un+1
(0) − un(0)

∆t
+∇·

(
un+1

(0) ⊗ un+1
(0)

)
+∇

pn+1
(2)

ρn+1
(0)

= En+1,

∇·un+1
(0) = 0,

(30)

where En+1 is a consistency error term satisfying

|En+1| ≤ C‖un+1
(0) − un(0)‖W 1,∞

(
‖un+1

(0) − un(0)‖W 1,∞ + ‖un(0) − unR,(0)‖W 1,∞

)
, (31)

where C depends only on γ.

Proof. We have proved that un+1
(0) is divergence-free in Lemma 3. The proof of the

first equality in (30) is lengthy and thus we shall omit it. Nevertheless, the proof
follows the same principles as demonstrated in the proofs of the previous lemmas.
One collects the ε0 terms form the x and y momentum equations from (4). These
equations are rather lengthy. One then proceeds to simplify these equations using
results from Lemmas 1 – 3 and the O(ε2) terms from the equation of state (3). The
resulting equations can then be rearranged to the from (30) with right-hand side
terms that can be rather straightforwardly estimated as in (31).

If we denote δn := ‖un(0) −unR,(0)‖W 1,∞ , the consistency error (31) is of the order

|En+1| ≤ C∆t(∆t+ δn). (32)

The Dolejší-Feistauer-Kučera scheme is based on the choice unR,(0) = un(0), hence
δn = 0 and the consistency error satisfies

En+1 = O(∆t2). (33)
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For the RS-IMEX scheme we take unR,(0) = uref(tn), hence δn = O(∆t) and again
En+1 = O(∆t2). We note that in both cases the consistency error is of the second
order which is one order higher than the error of approximating the time derivative
in (30). We call this property superconsistency of the flux approximation. This
phenomenon might explain the excellent performance of the Dolejší-Feistauer-Kučera
scheme for computing steady state solutions, where the time derivative is close to
zero and the consistency error is of second order due to (33).

4.1. Well prepared initial data

An important property of scheme (4) is that it does not generate acoustics if they
are not present in the initial conditions (so-called well-prepared initial conditions).
Since acoustics are O(ε) perturbations of density, pressure and divergence of velocity,
this assumption amounts to having only O(ε2) perturbations in these quantities.

Definition 2. We say that the initial data ρ0, p0,u0 are well prepared if

ρ0 = const +O(ε2), p0 = const +O(ε2), ∇·u0 = O(ε2). (34)

If the mentioned quantities possess Hilbert expansions, Definition 2 amounts to
ρ0

(1) = p0
(1) = ∇·u0

(1) = 0. Now we prove that if the initial data are well prepared
then also ρn = const + O(ε2), pn = const + O(ε2) and ∇·un = O(ε2) for all n.

Theorem 5. Let the assumptions of Theorem 4 hold. Assume also that the initial
data are well prepared in the sense of Definition 2 and that ρnR,(1) = 0 for all n. Then
ρn(1) = pn(1) = ∇·un(1) = 0 for all n.

Proof. We collect the ε1 terms of the mass equation from scheme (4):

ρn+1
(1) − ρn(1)

∆t
+∇·

(
ρn+1

(0) un+1
(1) + ρn+1

(1) un+1
(0)

)
= 0. (35)

Similarly, we collect the ε1 terms of the energy equation from (4), along with (15):

En+1
(1) − En

(1)

∆t
+∇·

((
En

(0) + pn(0)

)
un(1) +

(
En

(1) + pn(1)

)
un(0) − γ

ER,(0)uR,(0)

ρR,(0)

(ρn+1
(1) − ρ

n
(1))

− γ
(ER,(0)uR,(1) + ER,(1)uR,(0)

ρR,(0)

−
ER,(0)uR,(0)(ρR,(1))

2

ρR,(0)

)
(ρn+1

(0) − ρ
n
(0))

+ γ
ER,(0)

ρR,(0)

(
ρn+1

(0) un+1
(1) + ρn+1

(1) un+1
(0) − ρ

n
(0)u

n
(1) − ρn(1)u

n
(0)

)
+ γ
(ER,(1)

ρR,(0)

−
ER,(0)ρR,(1)

(ρR,(0))2

)(
ρn+1

(0) un+1
(0) − ρ

n
(0)u

n
(0))

+ γuR,(0)(E
n+1
(1) − E

n
(1)) + γuR,(1)(E

n+1
(0) − E

n
(0))

)
= 0. (36)
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Now we proceed similarly as in the proofs of Lemmas 2 and 3. We integrate (36)
over Ω and apply Green’s theorem. Similarly as in (22), the resulting boundary
terms are equal to zero due to boundary conditions. This gives us En+1

(1) = En
(1) for

all n. Consequently also pn+1
(1) = pn(1) for all n, by taking the ε1 terms in (3). This

implies that pn(1) = p0
(1) = 0 for all n.

We proceed by induction and assume that the assumptions of the theorem hold
on time level tn. Gathering the assumptions and all previous results, we have that
En

(0), E
n
(1), p

n
(0) and pn(1) are independent of x and n, ∇·un(0) = ∇·un+1

(0) = ∇·un(1) =

∇·uR,(0) = 0 and ρn+1
(0) = ρn(0). These results allow us to simplify (36) to

−uR,(0)∇· (ρn+1
(1) − ρ

n
(1)) +∇·

(
ρn+1

(0) un+1
(1) + ρn+1

(1) un+1
(0)

)
= 0. (37)

The second term can be substituted into the mass equation (35) to obtain

ρn+1
(1) − ρn(1)

∆t
+ uR,(0)∇· (ρn+1

(1) − ρ
n
(1)) = 0. (38)

Now we proceed similarly as in the proof of Lemma 3 – we multiply (38) by ρn+1
(1) −ρn(1)

and apply Green’s theorem. All resulting integral terms vanish either due to bound-
ary conditions or since ∇·uR,(0) = 0. This implies that ρn+1

(1) − ρn(1) = 0, hence, by

induction ρn+1
(1) = ρ0

(1) = 0. Using this fact in (35) implies ∇·un+1
(1) = 0.

5. Conclusions and outlook

We have analyzed the asymptotic consistency of a class of linearly implicit schemes
for the compressible Euler equations in the low-Mach case. We have shown that the
obtained solution tends to the solution of the incompressible Euler equations as the
reference Mach number ε tends to zero. Furthermore, we have shown that the scheme
treats acoustics correctly in the sense that it does not generate acoustics for well-
prepared initial conditions (not containing acoustics). As special cases of our class
of schemes, one obtains the Dolejší-Feistauer-Kučera and RS-IMEX schemes.

Several details of the analysis were left out due to limited space, including the
proof of Theorem 4. These are contained in the authors’ paper [6]. One important
topic that was left out of this brief overview was the question of existence of the
Hilbert expansion with respect to ε of the form (12). In [6] the existence of the Hilbert
expansion is proved in 1D under the simplifying assumption that the reference state
wR is constant in space. Even so the proof is lengthy and technical. Proving the
existence of the Hilbert expansion in the general case is left for future work.
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