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Abstract: The slope shape is replaced by a 3D regression function which
corresponds with high precision to the position of several hundred points which
were determined on the surface of the slope body. The position of several points
was repeatedly measured for several years. The time changes in the position
of these points were used to create regression functions that describe vertical
movements, slope settlement and horizontal movements, slope movement. The
model results are presented in the form of mathematical relationships and
visualized in the program Maple environment.
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1. Introduction

The artificial slope was created as a surface cover for the municipal waste landfill
in Štepánovice, Klatovy district.

Geographical coordinates and an altitude of 261 points were measured on the
slope surface. Furthermore, the coordinates of six stationary reference points in the
vicinity of the slope were determined. Fifteen moving points were selected on the hill,
the position of which compared to the reference points was repeatedly determined
twice a year for five years. The task was to find out whether the slope does not slide
– that is, the moving points on the slope surface move in the direction of the slope
or whether the slope does not move – in this case the moving points would move in
the direction of the subsoil slopes. The new material is delivered and stored behind
the right edge of the slope perimeter.

The Maple symbolic algebra program was used for all calculations and graphical
outputs. Given the scope of this publication, it is not possible to state the whole
calculation procedure here. Therefore, Maple commands will be listed here only for
essential parts of the solution. Otherwise, the solution procedure will be described
only verbally.
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2. Mathematical model of slope shape

2.1. Regression function describing the shape of the slope

First it is necessary to convert the geographical coordinates in the form [λk,φk,hk],
k = 1..261, where λ = longitude, φ = latitude and h = altitude, to the rectangular
coordinates [xk, yk, hk]. The plane h = 0 of this coordinate system is the tangent
plane of the Krasovsky ellipsoid, see [1], at a point which is the arithmetic mean of
the coordinates λ and φ. The positive direction of the y axis is oriented to the north.

As a regression function for the description of the slope surface h = f(x, y), it is
perfect

h ≡ f(x, y) = K + exp

(
−

8∑
i=0

(
xi

8−i∑
j=0

yj ai,j

))
, (1)

which is non-linear with respect to the coefficients ai,j. These coefficients must be
determined using the Gauss-Newton iteration method, see [2]. The initial values of
the coefficients can be calculated by linearising the equation (1), if K = 0 is placed
and the rectangular coordinates [xk, yk, hk] of the points focused on the slope surface
are substituted for [x, y, h],

ln (hk) =
8∑

i=0

(
xk

i

8−i∑
j=0

yk
jai,j

)
. (2)

The initial values of the coefficients ai,j can be determined from the equation (2)
using the least squares method.

The final values of the coefficients from the equation (1) are calculated after 73 it-
eration steps. During the iteration, the size limitation of the correction members ∆Ac

was used in the form of:

∆Ac =
∆A√( ε

100

)2
+ 1

, where


∆A = [∆ai,j]

i=0..8
j=0..8−i

vector of
the corrections of ai,j

ε =

√√√√ 8∑
i=0

(
8−i∑
j=0

a2
i,j

)
quadratic norm of the corrections
of the vector of the corrections

. (3)

The agreement between the measured heights and the heights calculated accord-
ing to the equation (1) is excellent. The coefficient of determination reached the
value R2 = 0.9995 and the analysis of variance calculated by the ANOVA method
gives the value p = 0.9996.

The resulting 3D regression function is shown in Figure 1. The points defining
the shape of the surface are shown by crosses, the moving points are shown by
small squares and black, almost invisible thick lines show the differences between the
measured and calculated heights.
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Figure 1: Regression function, measured points, moving points and differences.

2.2. Determination of the perimeter of the slope

All points were first transformed into the plane h = 0, i.e. [xk, yk, hk]→ [xk, yk, 0].
The points on the perimeter of the hull were determined using an Incremental convex
hull algorithm, ICHA, see [3]. After that, the convex perimeter was changed to
concave using the author’s algorithm. The basic principle of this algorithm is:

1. Remove all points on the slope that make up the perimeter. A set of PL points
is created.

2. For each line segment LSi that forms the perimeter, find all points from PL
for which the heel of the perpendicular running from PLj to LSi is its own
point. A set of PF points is created.

3. If the angle subtended by the lines passing through the endpoints of line seg-
ment LSi and point PFj is greater than the specified value, replace the line
segment LSi with two line segments that have a common point PFj and end-
points identical with line segment LSi.

4. Remove the PFi point from the PF set.

5. Repeat the entire procedure until the PF set is empty.

The resulting convex perimeter after ICHA is shown in Figure 2 on the left. The
concave perimeter, after using the author’s algorithm, is shown in Figure 2 on the
right. Solid circles show the points that make up the convex perimeter. The points
that change the convex perimeter to concave are shown by empty circles. A cross
indicates the points inside the perimeter.
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Figure 2: Convex perimeter – left and concave perimeter – right.

2.3. Triangulation

Maple cannot work with finding a curve that is created by the intersection of two
surfaces. Therefore, it is not possible to limit the area showing the slope surface by
a curve that results in the intersection with the surface describing the shape of the
subsoil. In this case, it is possible to draw the shape of the slope using triangulation
accurately because Maple can accurately display a triangle in space.

The triangulation procedure is shown in Figure 3. The basis is the circumferential
curve of the slope, projected into the plane xy, including the points that define it.
A regular network of right triangles is formed inside this curve. The length of the
perpendicular of the triangle is chosen to correspond to the smallest distance of the
two adjacent points forming the circumference, see Figure 3 on the left.

In the second step, the points of the network that are closest to the points defining
the circuit are moved to these points. The remaining points of the perimeter of the
triangular network are moved to the corresponding positions on the lines that make
up the perimeter. See Figure 3 in the middle.

In the last step, those triangles that are too large are divided into four smaller
ones, see Figure 3 on the right.

The spatial representation of triangulation is shown in Figure 4.

2.4. Shape of the subsoil

The function,

h = 425.61+0.000106x2 +0.0000113 y2 +0.074770x−0.049936 y−0.000260xy (4)
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Figure 3: Triangulation

which defines the subsoil shape, was found using selected points from the slope’s
perimeter and reference points. There are a total of 38 points, which are shown in
Figure 4. Six reference points are marked with a square and 32 points from the
perimeter of the slope are marked with a cross. A thick black line indicates the
intersection of the slope surface with the ground surface.
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Figure 4: Subsoil and slope

The h function, see (4) interleaves the entered points with excellent accuracy. Its
coefficient of determination is R2 = 0.9991 and the p value calculated by the ANOVA
method is even p = 1− 10−8.
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3. Results

3.1. Displacement visualization

In the first step, the displacement vectors are plotted for the entire monitoring
time, see Figure 5. These vectors are plotted with a thick black arrow and are
compared to vectors corresponding to the slope gradient, which are plotted in dark
gray, and with vectors corresponding to the subsoil slope, which are plotted in light
gray. Identical color shades are also used to represent the hill and subsoil contours,
which increase the clarity of Figure 5. Black squares indicate the starting positions
of the moving points. A thick black line highlights the perimeter of the hill.
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Figure 5: Displacement vectors – black, slope gradient – dark gray and subsoil
gradient – light gray.

It can be seen from Figure 5 that the displacement vectors do not correlate
with the slope gradient vectors. The correlation of the direction of displacement
and gradient of the slope in the xy plane is 0.21 - the hill does not collapse. The
correlation of the direction of displacement and incline of the subsoil in the xy plane
is 0.25 - the hill does not move. Therefore, movements in the vertical direction and
the xy plane will be examined separately.

3.2. Vertical displacement

First, the dependencies of the vertical displacement on the relative height of the
slope of the subsoil are plotted for individual years, see Figure 6.
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Figure 6: Dependences of vertical displacement on relative slope height h

It is very clear from this figure that for each year, it is possible to intersect the
vertical displacement by a linear regression function of the relative slope height h.
The coefficients of regression functions for individual years can be found by the
method of least squares. The resulting regression functions, including the individual
reliability coefficients and p values calculated by the method of analysis of variance,
are given in Table 1.

time [year] ∆h(h, t) [m] R2 p - value

0 0 1.0 1.0
0.91721 3.92779− 0.15618h 0.68234 1− 1 · 10−10

1.91655 3.95526− 0.26810h 0.74713 1− 3 · 10−10

2.99803 3.93985− 0.37299h 0.71784 1− 5 · 10−10

4.000117 3.67578− 0.43037h 0.72088 1− 1 · 10−10

Table 1: Vertical displacement depending on relative height and time.

It is clear from Figure 6 and Table 1 that a regression function ∆h(h, t) can inter-
polate the vertical displacement. This function should be zero for t = 0, ∆h(h, 0) = 0
or for h = 0, ∆h(0, t) = 0. A simple function that meets these requirements is:

∆h(h, t) = 0.54559 t h− 0.12271h t2 − 0.03369 t h2 + 0.00656 t2 h2. (5)

Its coefficients were calculated from the measured values by the method of least
squares. For the calculated vertical displacement, the coefficient of determination is
R2 = 0.72898, and the value of p calculated by the ANOVA method is, p = 0.59345,
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Figure 7: Dependence of vertical displacement on relative slope height h and time t

which are outstanding values. Figure 7 is a spatial representation of the function
∆h(h, t), (5), including measured values and error bars.

3.3. Horizontal displacement

For the sake of brevity and clarity, we will carry out a study of the overall
horizontal shift for the entire period under review, i.e., for approximately five years.
We will first draw the total displacement vectors and the slope and subsoil slope
vectors, see Figure 8. Black circles indicate the initial positions of the moving points.
Strong white arrows indicate the displacement vectors, dark gray arrows draw the
slope gradient vectors, and the light gray arrows show the subsoil slopes. It is clear
from Figure 8 that the displacement vectors do not correspond to the slope and
subsoil gradients.

Therefore, we will try to find the vector field’s regression function that will cor-
respond to the vectors of the resulting displacement. Suppose that a vector field can
be described by a function:

VF (x, y) =

[
3∑

i=0

3−i∑
j=0

Axi,j x
i yj,

3∑
i=0

3−i∑
j=0

Byi,j x
i yj

]
, (6)

where the coefficients Axi,j and Byi,j are calculated using the least squares method.
The displacement vectors of the individual moving points are stored in the Maple
variable rp. The procedure for this calculation in the Maple environment is:
> rp2d:=map(u->map(v->v[1..2],u),rpa): vf:=op(expand((x+y+1)**3)): nf:=nops(vf);

> vf:=unapply(sum(op(’i’,vf)*a[’i’],’i’=1..nf),x,y): Var:=[seq(a[i],i=1..nf)]:

> COL:=unapply(map(u->select(has,vf(x,y),u)/u,Var),x,y):
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Figure 9: Measured and computed dis-
placement and vector field

> M:=Matrix(map(u->COL(u[1][]),rp2d)):

> Bx:=Vector(map(u->u[2][1],rp2d)): By:=Vector(map(u->u[2][2],rp2d)):

> Ax:=LeastSquares(M,Bx); Ay:=LeastSquares(M,By):

> FX:=subs(seq(a[i]=Ax[i],i=1..nf),vf(x,y)):

> FY:=subs(seq(a[i]=Ay[i],i=1..nf),vf(x,y)):

> VF:=unapply([FX,FY],x,y);

V F := (x, y) 7→ [−18.985− 1.0051 · 10−5 y3 − 1.8326 · 10−4 x3 + 0.08193 y + 0.1250x
+ 3.7991 · 10−3 y2 − 5.0513 · 10−3 x2 − 1.4572 · 10−4 x y
+ 4.7957 · 10−5 x y2 + 3.2184 · 10−5 x2y,
− 9.2791− 2.70688 · 10−5 y3 + 1.7425 · 10−4 x3 + 0.1674 y − 0.1932x
− 1.1561 · 10−3 y2 + 2.588 · 10−3 x2 − 2.6894 · 10−4 x y
+ 6.1792 · 10−6 x y2 − 8.0956 · 10−6 x2y]

(7)

The calculated displacement vectors for the individual moving points are shown
in Figures 8 and 9 by strong white arrows. In Figure 9, the vector field corresponding
to the equation (7) is indicated by small arrows.

If the shape of the vector field function is known, it is possible to calculate this
field’s flow lines by numerical integration. These lines correspond to the direction of
movement of the slope surface. The flow lines corresponding to the function (7)are
shown in Figure 10. The vortex is visible at the coordinates [46.4,−69.1] in the
lower right corner of this image. Since the slope surface cannot move in this way, it
is appropriate to remove this vortex. Since there is no moving point in this vortex’s
vicinity, let us try to assume that such a moving point would be located right in the
center of the vortex.
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Figure 10: Flow lines of the original vec-
tor field
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Figure 11: Flow lines of the amended
vector field

Furthermore, it can be assumed that the vector of the total displacement could
have a direction perpendicular to the nearest part of the slope circumference. We
place a vector with the average size of the vectors of all moving points in the center
of the vortex and orient it in the negative direction of the x-axis. So we add the
vector [−20.5, 0] to the variable rp and repeat the whole previous calculation. The
flow lines of the complemented vector field are shown in Figure 11. A thick gray
arrow indicates the new vector. As can be seen, the vortex has been removed.

It remains to be seen how much the new vector’s addition altered the quality of
the regression. This can be done by calculating the coefficient of determination and
the p-value calculated by the ANOVA method. We perform calculations for absolute
values and displacement vector arguments for the original and modified vector fields.
The results are shown in Table 2.

Original vector field Amended vector field

R2 p - value R2 p - value

Abs. value 0.710 0.984 0.700 0.991
Argument 0.990 0.960 0.960 0.954

Table 2: Regression quality for original and amended vector fields.
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It is clear from Figure 11 that the flow lines are approximately perpendicular
to the slope contour’s right side. Therefore, in Figure 12, all lines forming the
right side of the slope outline are drawn, and the light gray arrows indicate the
perpendicular direction to the individual lines. Dark gray and medium gray arrows
indicate the original and amended vector field’s vectors going through to the separate
line segments center points.

Figure 13 also supports the finding that both vector fields are mostly perpendi-
cular to the contour’s right edge, displaying the box graphs of the arguments of the
directional vectors. The light gray corresponds to the normal vectors. The light gray
corresponds to the original vector field, and the supplemented vector field is in dark
gray.
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Figure 12: Vector fields and directional
vectors of the active edge
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4. Conclusion

4.1. Surface movement in the vertical direction

The following facts follow from equation (5):

1. Positive vertical displacements in the entire slope area will cease after 4.45 years.

2. If the material layer is higher than 16.20 m, no positive vertical displacements
will occur because its own weight compresses the slope material.

3. The maximum vertical displacement in the positive direction of 2.20 cm occurs
after 2.00 years in a layer of material 7.30 meters thick.
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4.2. Surface movement in the horizontal direction

From the properties of the vector field described by the equation (7) and the
Figures 8–13 it can be deduced:

1. The slope as a whole does not slide on the subsoil.

2. Slope material does not slide.

3. The slope material is moved in the direction of the forces that arise when
depositing a new material on the active edge of the slope. These forces are
caused by the new material and the weight of moving vehicles.
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