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Abstract: We assume the nonlinear parabolic problem in a time dependent
domain, where the evolution of the domain is described by a regular given
mapping. The problem is discretized by the discontinuous Galerkin (DG)
method modified by the right Radau quadrature in time with the aid of Arbi-
trary Lagrangian-Eulerian (ALE) formulation. The sketch of the proof of the
stability of the method is shown.
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1. Introduction

There are many theoretical results devoted to the stability analysis of parabolic
problems with a fixed domain. Nevertheless, there is number of areas with many im-
portant applications of parabolic PDEs with time dependent domain, e.g. problems
with moving boundaries, where the motion of the boundary is either prescribed or
given by other means.

There are several approaches how to deal with problems in time dependent do-
mains, e.g. fictitious domain method, see e.g. [15], or immersed boundary method,
see e.g. [3]. A very popular technique is Arbitrary Lagrangian-Eulerian (ALE)
method that is based on a regular one-to-one ALE mapping of the reference domain
to the current one. ALE method is often applied in connection with conforming fi-
nite element method (FEM) in space and lower order time discretizations (backward
Euler method, Crank-Nicolson method, BDF2), see e.g. [12] or [13]. The numerical
analysis of the lower order time discretization schemes can be found in [1], [7], [8].

We present a higher order time discretization of arbitrary order based on DG
method, where the integrals are evaluated by right Radau quadrature. For a sur-
vey about DG time discretization, see e.g. [16], the connection between Galerkin
discretizations and implicit Runge-Kutta methods can be found in [14]. DG time
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discretization and its Radau quadrature variant are well known for their high robust-
ness and accuracy. This is confirmed by experiments, see e.g. [4] where the results
obtained by BDF and time DG are compared on the problem of vibrating airfoil.
According to this comparison, DG time discretization seems to be more robust and
accurate than BDF.

2. Continuous problem

Let T > 0. The evolution of the bounded polyhedral time dependent domain
Ωt ⊂ R

d (d = 1, 2, 3) with a Lipschitz continuous boundary ∂Ωt in time is described
by a given regular one-to-one ALE mapping

A : Ω0 × [0, T ] → Ωt, (1)

where Ω0 or Ωt are closures of Ω0 or Ωt, respectively. For the purpose of the proof of
the stability we introduce following regularity assumptions on the ALE mapping A:

A ∈ W 1,∞(0, T, W 1,∞(Ω0)), A−1 ∈ W 1,∞(0, T, W 1,∞(Ωt)). (2)

Moreover, we denote the Jacobi matrix of A by B = dA/dX, the corresponding
determinant by J = det(B) and the domain velocity by ω = ∂A/∂t ◦A−1. From the
regularity assumptions (2) it is possible to show that B, B−1, J , J−1, ω and ∇ · ω
are bounded, i.e. there exists a constant CA > 0 such that

max(‖B‖L∞(0,T,L∞(Ω0)), ‖B
−1‖L∞(0,T,L∞(Ω0)), ‖J‖W 1,∞(0,T,L∞(Ω0)) (3)

‖J−1‖L∞(0,T,L∞(Ω0)), ‖ω‖L∞(0,T,L∞(Ωt)), ‖∇ · ω‖L∞(0,T,L∞(Ωt))) ≤ CA.

We consider the following nonliner initial–boundary value problem

∂u

∂t
− div(β(u)∇u) = f in Ωt × (0, T ), (4)

u = 0 in ∂Ωt × (0, T ),

u = u0 in Ω0.

We assume that the right-hand side f ∈ C([0, T ], L2(Ωt)), the initial condition
u0 ∈ L2(Ω0) and the function β : R → [β0, β1], where 0 < β0 ≤ β1 < ∞, is Lip-
shitz continuous. We denote by (., .)t and ‖.‖t the L2(Ωt) scalar product and norm,
respectively.

Problem (4) is usually transformed into the ALE formulation. To this end, we
introduce ALE derivative

Dtu =
∂u

∂t
+ ω · ∇u. (5)

Now we introduce the ALE formulation equivalent to problem (4)

Dtu − div(β(u)∇u)− ω · ∇u = f in Ωt × (0, T ), (6)

u = 0 in ∂Ωt × (0, T ),

u = u0 in Ω0.
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3. Discretization

In this section we only describe time discretization (Rothe’s method) of prob-
lem (6) by discontinuous Galerkin time discretization and its right Radau quadrature
variant.

3.1. Time discontinuous Galerkin

In order to discretize problem (6) in time, we consider a time partition 0 = t0 <
t1 < . . . < tr = T with time intervals Im = (tm−1, tm), time steps τm = tm − tm−1

and τ = maxm=1,...,r τm. We define the solution space

V τ = {v ∈ L2(0, T, H1
0(Ωt)) : (v ◦ A)|Im

∈ Pq(Im, H1
0 (Ω0))}.

For a function v ∈ V τ we define the one–sided limits

vm
± = v(tm±) = lim

t→tm±
v(t) (7)

and the jumps

{v}m = vm
+ − vm

− , m ≥ 1 and {v}0 = v0
+ − u0. (8)

Now, we are able to formulate the semi-discrete time discontinuous Galerkin
scheme:

Definition 1. We say that a function U ∈ V τ is the discrete solution of problem (6)
obtained by time discontinuous Galerkin method, if the following conditions are sat-

isfied

∫

Im

(DtU, v)t + (β(U)∇U,∇v)t − (ω · ∇U, v)tdt + ({U}m−1, v
m−1
+ )tm−1

(9)

=

∫

Im

(f, v)tdt ∀m = 1, . . . , r, ∀v ∈ V τ .

3.2. Radau quadrature

The method (9) contains an integral of the nonlinear term that can be difficult to
evaluate exactly. Therefore, it is favourable to apply a suitable quadrature formula.

Let r ∈ Pq+1 be a polynomial of degree q + 1 satisfying r(0) = 1, r(1) = 0 and
r ⊥ Pq−1. We denote the zeros of this polynomial c0, . . . , cq, where cq = 1. Then
we define right Radau quadrature (right Gauss-Radau quadrature) rule on [0, 1] of
function F by

∫ 1

0

F (t) dt ≈ Q[F ] =

q
∑

i=0

biF (ci), (10)
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where the weights bi are chosen in such a way that the resulting quadrature has
maximal degree, i.e. degree 2q. Similarly, one can define right Radau quadrature
on Im by

∫

Im

F (t) dt ≈ Qm[F ] = τm

q
∑

i=0

biF (cm,i), (11)

where cm,i = tm−1 + τmci and cm,q = tm−1 + τmcq = tm.

Now, we are able to formulate the semi-discrete quadrature variant of method (9):

Definition 2. We say that a function U ∈ V τ is the discrete solution of problem (6)
obtained by quadrature variant of time discontinuous Galerkin method, if the follow-

ing conditions are satisfied

Qm[(DtU, v)t + (β(U)∇U,∇v)t − (ω · ∇U, v)t] + ({U}m−1, v
m−1
+ )tm−1

(12)

= Qm[(f, v)t] ∀m = 1, . . . , r, ∀v ∈ V τ .

For simplicity, we assume that there exists an unique discrete solution.

The time discretization in (12) can be viewed as a generalization of some specific
classical one–step methods for parabolic problems. It is possible to show that setting
q = 0, i.e. piecewise constant approximation in time, is equivalent to backward
Euler method in time. Similarly, the higher polynomial degree approximations in
time lead to methods that are equivalent to Radau IIA Runge-Kutta methods. For
details about the relations between Galerkin methods and Runge-Kutta methods see
e.g. [9] and [14]. For the descriptions of Radau IIA Runge-Kutta methods see e.g. [6]
or [10] and [11].

4. Stability analysis

The aim of this section is to show that the numerical scheme (12) is stable, i.e.
the approximate solution obtained from (12) can be bounded in terms of the data f
and u0 of the problem (4). Through this section we will denote by C1, C2, . . . > 0
constants that can depend on the data bounds β0 and β1, on the polynomial degree q
and the regularity of ALE mapping CA.

Setting v = U in (12) we get the basic identity

Qm[(DtU, U)t + (β(U)∇U,∇U)t − (ω · ∇U, U)t] + ({U}m−1, U
m−1
+ )tm−1

(13)

= Qm[(f, U)t].

We can estimate individual terms in (13).
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Lemma 1. There exists constants C1, C2 > 0 such that

Qm[(DtU, U)t] + ({U}m−1, U
m−1
+ )tm−1

(14)

≥
1

2
‖Um

− ‖2
tm

−
1

2
‖Um−1

− ‖2
tm−1

− C1Qm[‖U‖2
t ], ∀U ∈ V τ ,

Qm[(β(U)∇U,∇U)t] ≥ β0Qm[‖∇U‖2
t ], ∀U ∈ V τ ,

Qm[(β(U)∇U,∇v)t] ≤ β1Qm[‖∇U‖2
t ] +

β1

4
Qm[‖∇v‖2

t ], ∀U, v ∈ V τ ,

Qm[(ω · ∇U, v)t] ≤
β0

2
Qm[‖∇U‖2

t ] + C2Qm[‖v‖2
t ], ∀U, v ∈ V τ ,

Qm[(f, U)t] ≤
1

4
Qm[‖U‖2

t ] + Qm[‖f‖2
t ], ∀v ∈ V τ .

Proof. The first inequality in (14) is just a modification of the similar result from [2],
where the quadrature Qm is replaced by integral over Im. The proof is analogical.
All the other inequalities in (14) are just an application of Cauchy’s and Young’s
inequalities.

Applying individual estimates from Lemma 1 we get

1

2
‖Um

− ‖2
tm

−
1

2
‖Um−1

− ‖2
tm−1

+
β0

2
Qm[‖∇U‖2

t ] ≤ Qm[‖f‖2
t ] + C3Qm[‖U‖2

t ], (15)

≤ Qm[‖f‖2
t ] + τmC3 sup

t∈Im

‖U‖2
t .

To be able to get rid of the last supremum term, we need to derive a technique
for estimating the values of the discrete solution inside of intervals Im.

4.1. Discrete characteristic function

The concept of the discrete characteristic function on fixed domains comes from [5].
We will use a notation ṽ = v◦A for the transformation of functions from the evolving
space-time cylinder to the reference space-time cylinder. From the assumptions on
the ALE mapping A and according to the definition of space V τ it is possible to see
that this transformation is bijection between V τ and Ṽ τ , where

Ṽ τ = {v ∈ L2(0, T, H1
0(Ω0)) : v|Im

∈ Pq(Im, H1
0 (Ω0))}, (16)

i.e. Ṽ τ represents the space of classical piecewise polynomial functions in time.
We define the discrete characteristic function for time dependent domains in three

steps. At first, the given function U ∈ V τ is transformed onto the reference domain,
i.e. Ũ = U ◦ A ∈ Ṽ τ . Second step is the construction of discrete characteristic
function in fixed domains, i.e. Ũs ∈ Ṽ τ such that

Ũm−1
s+ = Ũm−1

+ , (17)
∫

Im

(

Ũs,
∂v

∂t

)

0

dt =

∫ s

tm−1

(

Ũ ,
∂v

∂t

)

0

dt ∀v ∈ Ṽ τ
h .

The last step is the transformation back to the current domain, i.e. Us = Ũs ◦ A
−1∈V τ.
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Now, we want to show the properties of the discrete characteristic function.

Lemma 2. Let U ∈ V τ and Us ∈ V τ be its discrete characteristic function associated

with s ∈ Im. Then there exists constants C4, C5 > 0 such that

Qm[(DtU, Us)t] + ({U}m−1, U
m−1
s+ )tm−1

≥
1

2
‖U(s)‖2

s −
1

2
‖Um−1

− ‖2
tm−1

(18)

− C4τm sup
t∈Im

‖U‖2
t ,

Qm[‖Us‖
2
t ] ≤ C5Qm[‖U‖2

t ],

Qm[‖∇Us‖
2
t ] ≤ C5Qm[‖∇U‖2

t ] dt. (19)

Proof. An analogical result is proved in [2]. Since the proof is long and technical, it
is skipped in this paper.

4.2. Main result

Now, we are ready to formulate the main result.

Theorem 3. Let U ∈ V τ be an approximate solution obtained by scheme (12). Then

there exist constants C > 0 and C∗ > 0 such that τ < C∗ implies

sup
Im

‖U‖2
t ≤ C(‖u0‖2

0 + T‖f‖2
L∞(0,T,L2(Ωt))

). (20)

Proof. Setting v = Us in the left-hand side of (12), where s ∈ [tm−1, tm] such that
‖U(s)‖s = supt∈Im

‖U‖t, and Lemma 1 and Lemma 2 we get

Qm[(DtU, Us)t + (β(U)∇U,∇Us)t − (ω · ∇U, Us)t] + ({U}m−1, U
m−1
+ )tm−1

(21)

≥
1

2
sup
Im

‖U‖2
t −

1

2
sup
Im−1

‖U‖2
t − C4τm sup

t∈Im

‖U‖2
t − β1Qm[‖∇U‖2

t ]

−
β1C5

4
Qm[‖∇U‖2

t ] −
β0

2
Qm[‖∇U‖2

t ] − C2C5τm sup
t∈Im

‖U‖2
t ,

where we use the notation supI0
‖U‖2

t = ‖u0‖2
0. Similarly, setting v = Us in the

right-hand side of (9) we get

Qm[(f, Us)t] ≤ Qm[‖f‖2
t ] +

C5

4
τm sup

t∈Im

‖U‖2
t . (22)

Using these relations we get

1

2
sup
Im

‖U‖2
t −

1

2
sup
Im−1

‖U‖2
t ≤ Qm[‖f‖2

t ] + C6τm sup
t∈Im

‖U‖2
t + C7Qm[‖∇U‖2

t ],

where C6 = C4 + (4C2 + 1)C5/4 and C7 = (4β1 + β1C5 + 2β0)/4.
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Multiplying (15) by C8 = 2C7/β0 and summing with (23) we get

1

2

(

C8‖U
m
− ‖2

tm
+ sup

Im

‖U‖2
t

)

−
1

2

(

C8‖U
m−1
− ‖2

tm
+ sup

Im−1

‖U‖2
t

)

(23)

≤ (C8 + 1)Qm[‖f‖2
t ] + (C3C8 + C6)τm sup

t∈Im

‖U‖2
t .

Setting C∗ = (8C1C3 + 2C2)
−1 we get (C3C8 + C6)τm < 1/2 and the statement of

the theorem follows from the application of the discrete Gronwall lemma.
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