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Abstract: The purpose of our work is to develop an automatic shape op-
timization tool for runner wheel blades in reaction water turbines, especially
in Kaplan turbines. The fluid flow is simulated using an in-house incompress-
ible turbulent flow solver based on recently introduced isogeometric analysis
(see e.g. J. A. Cotrell et al.: Isogeometric Analysis: Toward Integration of
CAD and FEA, Wiley, 2009). The proposed automatic shape optimization
approach is based on a so-called hybrid optimization which combines gradient-
free and gradient-based methods. As the gradient-free method, the Particle
Swarm Optimization (PSO) method is used. The gradient-based part exploits
a quasi-Newton method implemented in IpOpt software library (Interior Point
OPTimizer) and gradients of the objective function with respect to design vari-
ables are provided by automatic differentiation of the computer code which is
done with the help of CoDiPack software library (Code Differentiation Pack-
age).
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1. Introduction

Automatic shape optimization is a very complex problem itself, even for simple
test cases. Combined with modeling of real-world objects, like water turbines in our
case, it is an extremely challenging task. This is the reason why these methods are
frequently studied nowadays in the context of real-world applications.

In our case, the main aim of the automatic shape optimization is to improve
the turbine efficiency in a wide range of operating conditions, i.e., to optimize the
runner blade shape in such a way that the function describing efficiency with respect
to the unit flow rate is as “high and flat” as possible. The flow in water turbines is
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described by the motion of an incompressible Newtonian viscous fluid, i.e., by the
Navier–Stokes equations, or the RANS (Reynolds-Averaged Navier-Stokes) equations
with a suitable turbulent model (the reader is referred to [1], [2] for more details).
In general, the optimization problem can be stated as

min
φ

J(u(φ), p(φ), Ω(φ)) (1)

subject to
R(u, p, Ω) = 0 in Ω ⊂ Rn, (2)

where J denotes the objective function, which is specified later in this paper. The ve-
locity u and the pressure p are obtained as the solution of the Navier–Stokes/RANS
equations (2) on the domain Ω. In the optimization process, the shape of the runner
blade, which is given by selected design parameters φ, changes. Thus, the compu-
tational domain Ω and also the velocity u and the pressure p depend on the design
variables φ.

In general, there are two main approaches to shape optimization problems –
gradient-free or gradient-based methods. Gradient-free methods are heuristics used
for searching the whole design space and getting close to the global minimum of the
given objective function, but suffer from huge computational demands, especially in
cases with a large number of optimization parameters. On the other hand, gradient-
based methods can be less computationally demanding because they are, more or
less, independent of the number of optimization parameters (if a suitable method
for gradient computation is used). Further, they provide fast convergence to the
nearest local minimum. However, the obvious disadvantage is that gradients of the
objective function with respect to the optimization parameters are necessary. It can
be very difficult to compute them, or it is at least computationally expensive. The
so-called hybrid methods combine gradient-free and gradient-based methods to get
the best from both. We chose to adopt this approach in the proposed automatic
shape optimization tool described in this paper.

2. Automatic shape optimization

Our main goal is to develop a tool that automatically performs shape optimization
of a runner blade of a water turbine, with a special focus on Kaplan turbines, such
that the turbine efficiency is improved in a wide range of operating conditions. In
this section, we will give a brief overview of the proposed method.

Our approach is based on a hybrid optimization method that combines a gradient-
free and a gradient-based method. For the gradient-free part, the Particle Swarm
Optimization (PSO) method is used (see e.g. [8]), which performs well in many situ-
ations as it is reported in many papers. This part especially serves for searching the
global minimum in the design space. For the gradient-based part, a combination of
two software packages – IpOpt (see [5]) and CoDiPack (see [3]) – is used. CoDiPack
is a package for gradient evaluation in computer codes and is based on automatic
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Figure 1: Design parameters determining a planar blade profile

Figure 2: Left: Spatial blade profiles on cylinders. Right: The runner blades (blue)
in a runner wheel domain bounded by inner (orange) and outer (yellow) surfaces.

differentiation. Thus, this package is responsible for providing gradients of the objec-
tive function with respect to the design variables. The gradient-based method itself
is driven by IpOpt and a quasi-Newton method implemented there. The main aim
of this part is to obtain better approximation of the nearest minimum, i.e., improve
the solution found by the PSO method.

Before describing the objective function, it is necessary to mention some details
about geometric modeling of water turbines that are needed for understanding the
text below. The most important part is the modeling of the 3D shape of the runner
blade. The shape of the runner blade is typically determined by 7–11 planar blade
profiles. The shape of each planar blade profile is obtained by composing a so-called
camber line with a thickness function, which are determined by several parameters
(see Fig. 1). These parameters subsequently serve as the design parameters in the
optimization process. In our case, the camber line and the thickness function are
described by B-spline objects given by the design parameters, and subsequently also
the B-spline description of the planar blade profile is constructed. Further, each
planar blade profile is mapped to a cylinder of a given radius with axis coincident
with the turbine axis. Then, the B-spline description of the corresponding spatial
blade profiles is constructed (see Fig. 2 (left)). The final shape of the runner blade
is obtained as a loft B-spline surface interpolating these spatial blade profiles (see [9]
for more details on loft B-spline surfaces), see Fig. 2 (right).

17



An important part of any optimization is the choice of the objective function.
For computational reasons, our optimization method is based on the optimization of
the planar blade profiles determining the shape of the runner blade. This leads to
the following choice of the objective function

J = w1(−J1) + w2J2 + w3J3, (3)

which is a weighted combination of three terms (w1, w2, w3 represent the weights of
these terms, typically taken from [0, 1] and fulfilling w1 + w2 + w3 = 1):

• Total lift of the planar blade profile

J1 =

∫
bp

pn · lds,

where bp is the curve representing the blade profile, n is the unit outer normal
to the blade profile and l is the unit direction opposite to the blade motion.
This term is related to the turbine efficiency because by increasing the value
of J1, more energy is taken from the water by the runner blade. Negative sign
of J1 in (3) reflects the fact that the lift of the profile is maximized, whereas
the objective function J is minimized.

• Velocity term

J2 =

∫
bout

(ut − utarg)
2ds,

where utarg is the target value of the tangential velocity and bout is the outflow
boundary of the computational domain. This term reflects the fact that the
interaction of the runner wheel and the draft tube behind the runner wheel is
essential for the overall efficiency of the turbine. The value of utarg is based on
the experience from practice and preserves the optimal flow in the draft tube.

• Pressure term

J3 =

∫
bp,press

(p− ptarg, press)
2ds +

∫
bp,suc

(p− ptarg, suc)
2ds,

where ptarg, press and ptarg, suc are targets value of pressure at pressure and suc-
tion side of the blade profile, respectively. The idea of this term is to force the
pressure distribution along the pressure and suction side of the blade profile
to be as even as possible, which means that also the energy of water is evenly
taken along the blade profile, without any strokes. Thus, it also helps to pre-
vent cavitation. The specific values of ptarg, press and ptarg, suc for each blade
profile are derived from the pressure distribution along the initial blade profile
(from which the optimization process starts).
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Instead of the values of the objective function, it is also possible to monitor their
relative change with respect to the values of the objective function terms of the initial
design, i.e.,

J1,rel =
Linit

J1

, J2,rel =
J2

Vinit

, J3,rel =
J3

Pinit

,

where Linit, Vinit, Pinit correspond to J1, J2, J3 evaluated for the initial planar blade
profile, respectively. Of course, the initial values of the components of the objective
function differ for each planar blade profile. Then the objective function is defined as

J = w1J1,rel + w2J2,rel + w3J3,rel. (4)

Before describing the algorithm of the automatic shape optimization tool, we
will briefly review the fundamentals of the PSO method. A swarm (population) in
the i-th generation consists of N particles (members) such that each particle has
its position xi

j and velocity vi
j, j = 1, . . . , N . The movement of each particle is

influenced by its best known local position pi
j, j = 1, . . . , N , and is also guided

toward the particle of the population gi with the best global position in the search
space. To obtain the swarm in the (i + 1)-th generation, first the velocities of the
particles are updated via

vi+1
j = K(vi

j + c1r1(p
i
j − xi

j) + c2r2(g
i − xi

j)), j = 1, . . . , N,

where

K =
2

|2−Ψ−
√

Ψ2 − 4Ψ|
, Ψ = c1 + c2

and r1, r2, c1 and c2 are random numbers. Then, the particle positions are updated
via

xi+1
j = xi

j + vi+1
j , j = 1, . . . , N.

Finally, the objective function is evaluated for each new particle of the swarm and
the best positions pi+1

j , j = 1, . . . , N , and gi+1 are updated.
Now, we will give an overview of the proposed automatic shape optimization

tool and we will comment on some steps of this approach in more details after this
summarization.

1. For given operational conditions, like head or required flow rate, find the initial
design of the runner blade which is given by design parameters for a selected
number of planar blade profiles.

2. Precompute the initial values of all terms of the objective function (3) for all
planar blade profiles.

3. Choose the weights w1, w2, w3 (see (4)) for the follow-up optimization process.

4. Choose the parameters of the follow-up optimization process:
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• the size of the population in the swarm method;

• the number of cycles of the swarm method;

• the number of generations in each cycle of the swarm method;

• whether you want to use the gradient-based optimization or not (if so,
choose also its parameters, e.g. the maximum number of iterations of this
gradient-based optimization method).

5. For each planar blade profile do:

(a) For each cycle of the swarm method do:

i. Generate the population of the swarm.

ii. For each generation of the population in the cycle do:

A. For each member of the population do:

• generate the B-spline computational mesh;

• compute the fluid flow simulation;

• evaluate the objective function (see (4)).

B. Modify the members (i.e., design parameters) of the population.

(b) Use the gradient-based optimization to further improve the best member
found during the last cycle of the swarm method.

Step 5(a) is related to the fact that the velocity of the members of the population
typically quickly decreases in later generations of the PSO method. Thus, it does not
make much sense to run the optimization process in one cycle with many generations
because the swarm will get stuck around some point and becomes “stiff”. It is more
efficient to restart the swarm after several generations starting with the best member
found to this point, i.e., take the best member found so far and generate again the
population randomly around this best member.

Step 5A contains one of the most computationally intensive parts of the algo-
rithm because it involves the turbulent fluid flow simulations for each member of the
population. The first necessary part is to generate the geometry of the computa-
tional domain, i.e., generate the B-spline mesh between the two neighboring planar
blade profiles in the blade net. Note that the generated B-spline mesh has to be
refined (especially near the blade profile) as the viscosity of the simulated fluid is
low. The example of such B-spline mesh is shown in Fig. 3 (left). This B-spline
mesh is a result of a long-term searching of a compromise between the quality of the
results and the number of degrees of freedom. Fig. 3 (right) then shows an example
of the resulting pressure distribution obtained by the turbulent flow solver based
on LRN k − ω model (see [6]). Currently, we use a setting of initial and boundary
conditions for the turbulent model which is again a result of a long-term testing for
this particular problem, as no general setting, which works universally, exists. We
compute an unsteady flow simulation with a stopping criterion reflecting the relative
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Figure 3: Left: Multi-patch computational domain with the B-spline mesh for one of
the blade profiles (the closest one to the inner surface of the water turbine). Right:
Pressure computed by the turbulent flow solver.

change of the solution between two consequent time iterations and/or the relative
change of the objective function (4). With our setting, the given stopping criterion
is typically met in less than 200 time steps, but in tens of time steps later in the
optimization process, since we use the solution from the previous generation of the
swarm method as the initial one for the next generation.

Step 5(b) covers running the gradient-based optimization which starts from the
best member of the population found during the last cycle of the swarm method and
this step is optional. CoDiPack is used to differentiate the code performing the Step
5A in order to evaluate the gradients of the objective function with respect to the
design parameters.

3. Example

In this section, we will demonstrate the functionality of the proposed shape op-
timization algorithm on a particular example. In this example, the following basic
parameters of the Kaplan turbine are given:

• head H = 10 m;

• flow rate Q = 5.73 m3/s;

• unit speed n11 = 170 min−1.

In the following, we make some comments and mention some details related to se-
lected parts of the proposed optimization process related to this example.

In this case, the shape of the runner blade is determined by 7 planar blade profiles.
Thus, the optimization problem is solved for each of these 7 planar blade profiles and
each of them is determined by 10 design parameters. Assuming that the chord length
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and the ending offset are not taken as design parameters, we have 8 design parameters
left for the optimization: maximal camber v, position of maximal camber d, leading
edge angle β1, trailing edge angle β2, maximal thickness vt, position of maximal
thickness dt, output angle γ, radius ro of an osculating circle at the leading point.

In this example, the kinematic viscosity ν = 10−5, the time step ∆t = 10−3

and the turbulent intensity I = 5% are set. The computational domain between
the two blade profiles is composed of three patches, each of which is represented
as a B-spline surface (see Fig. 3 (left)), and provides 7085 degrees of freedom.
This domain represents the domain between two runner blades lying on the cylinder
corresponding to the given blade profile and is obtained by unfolding this cylinder
(see Fig. 2 (right), where the domain composed of gray, red and green subdomains
corresponds to the domain depicted in Fig. 3 (left)). We set the following boundary
conditions:

• inflow boundary (the left side of the left patch)

– For the RANS equations, the inflow velocity is set by its components
uin = (uin,m, uin,t), where uin,m is obtained from the prescribed flow rate Q
through the domain and uin,t is computed such that the direction of uin

coincides with the direction of the tangent of the camber line of the profile
at the leading point, i.e.,

uin,m =
4Q

π(D2 − d2)
, uin,t = uin,m tan α,

where Q = 5.73 m3/s, D = 1 m, d = 0.245852 m (in this particular case)
and α is the angle between the tangent of the camber line at the leading
point and the x-axis.

– For the k − ω turbulent model, we set Dirichlet boundary conditions as
follows

kin =
3

2
(UI)2, ωin =

kin

ννr

,

where U = ||uin|| and νr is the chosen viscosity ratio of the turbulent
viscosity to the kinematic viscosity at the inflow boundary.

• outflow boundary (the right side of the right patch)

– Homogeneous Neumann boundary conditions are used for the RANS equa-
tions and also for the k − ω turbulent model.

• blade profile (the top and the bottom curve of the middle patch)

– For the RANS equations, the velocity is set to zero (solid wall), i.e.,
ublade = 0.
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– For the k − ω turbulent model, we set

kblade = 0, ωblade =
6ν

0.0708(y1)2
,

where y1 is the distance of the first grid point from the nearest wall.

• at the remaining boundaries, i.e., the top and bottom sides of the left patch
and the right patch

– Periodic boundary conditions are set to simulate the behaviour of the
whole blade net.

We set the following parameters for the PSO method:

• the size of the population: 30;

• the number of PSO cycles: 4;

• the number of generations in each PSO cycle: 5.

It is important to note that we have also added several constraints on design parame-
ters which limit the design parameters to reasonable ranges or prescribe reasonable
relations between the design parameters:

• To prevent the occurrence of an inflection point on the camber line or the
thickness function, i.e., to prevent an “S shape” of these curves, we require the
following constraints to be fulfilled

v

d
< tan β1,

v

1− d
< tan β2,

vt − kt

1− dt

< tan γ.

• To limit the size of the osculating circle at the leading point with respect to
the thickness of the blade profile, we require ro < vt/2.

• The sum of the leading and trailing angle must not be too large, it must be
less than π/2 for theoretical reasons, i.e., we require β1 + β2 < π/2.

We also set bounds for some of the design parameters which are based more on
our intuition than on theoretical assumptions. For example, we use 0.25 < d <
0.75, 0.25 < dt < 0.75. For handling the constraints in the optimization method, we
use the penalty function approach presented in [7].

In the experiments, we chose several different combinations of weights for the
components of the objective function (4) to see how it affects the results. The
choices of weights are presented in the table below
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Figure 4: Evolution of the objective function and its parts for one of the blade
profiles.

w1 w2 w3

1. 0.25 0 0.75
2. 0.34 0.32 0.34
3. 0.4 0.2 0.4
4. 0.45 0.1 0.45
5. 0.5 0 0.5
6. 0.75 0 0.25

Because of the space limitation, only some selected results will be presented. Fig. 4
shows the evolution of the objective function for all variants of the weights and
also the evolution of all terms of the objective function during the iterations of the
optimization process for one of the blade profiles. The results for the other blade
profiles are similar. One of the observations that we can make is that the convergence
of the optimization process is better for the choices of weights, where the weight for
the velocity term is zero. On the other hand, for these choices of weights the velocity
term tends to increase, especially for the blade profiles closer to the runner wheel
hub. This does not have to be a problem because the initial blade profiles provide
tangential velocity close to the target one and, thus, the increase even in multiples
of the initial values does not have to mean that the blade is bad from this point
of view. It can still provide tangential velocity close to the target value. Further,
one can see an obvious drop in the objective function value after each restart of the

24



Figure 5: Left: Comparison of pressure distributions along the optimized and the
initial planar blade profiles for one of the blade profiles. Right: Comparison of the
final shapes provided by the optimization process for one of the blade profiles.

PSO method in most cases, whereas the optimization process tends to stagnate in
between.

We also present the comparison of the pressure distributions for all variants of the
weights together with the initial pressure distribution for one of the blade profiles
in Fig. 5 (left). The most visible outcome here is an obvious trend to make the
pressure distribution “flatter” on both sides of the blade profile. This is driven by
the pressure term of the objective function, as we mentioned above. A comparison of
the particular shapes of the resulting planar blade profiles is shown in Fig. 5 (right).
For the presented case, we can see that the optimization process makes the blade
profiles a little bit thicker and tends to move the position of the maximum camber
more to the right.

Finally, we mention some computational and implementation details. As the PSO
method requires analyzing a large number of swarm members in each generation,
this step is parallelized to exploit the computational power of modern computers
with many cores. Parallelization is also beneficial during gradient evaluation with
the help of CoDiPack, where “forward-mode” is used, i.e., each derivative of the
objective function with respect to some design variable is computed separately and
in parallel. This approach is used because the other option, i.e., the use of “reverse-
mode” of gradient evaluation, is extremely memory-demanding in this case. The
computational time required for running optimization of one runner blade depends
on specific settings of the method. For the example presented above, the optimization
of the runner blade took about 2.5 days on a computer with 2×10 cores CPU Intel
Xeon E5-2630 v4 @ 2.20GHz using 15 cores without the gradient-based optimization,
and about twice as much time with the gradient-based optimization.

4. Conclusions

In this paper, an overview of a new automatic shape optimization tool for wa-
ter turbines (especially, for Kaplan turbines) was presented. In our future work,
we will focus on several improvements of the presented method, like generaliza-
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tion to 2.5D case (combination of 2D turbulent flow simulations and 3D objective
function evaluations) and later to 3D case (3D turbulent flow simulations and objec-
tive function evaluations). However, the full 3D case of the automatic optimization
process is extremely computationally expensive at the moment and requires signifi-
cant improvements of the in-house turbulent flow solver (faster solving of large linear
systems, improvements in stabilization of the numerical solution and an adaptive re-
finement of the computational mesh).
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