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Institute of Mathematics CAS, Prague 2019

HYDROLOGICAL APPLICATIONS OF A MODEL-BASED

APPROACH TO FUZZY SET MEMBERSHIP FUNCTIONS

Jan Chleboun, Judita Runcziková
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Abstract: Since the common approach to defining membership functions of
fuzzy numbers is rather subjective, another, more objective method is pro-
posed. It is applicable in situations where two models, say M1 and M2, share
the same uncertain input parameter p. Model M1 is used to assess the fuzziness
of p, whereas the goal is to assess the fuzziness of the p-dependent output of
model M2. Simple examples are presented to illustrate the proposed approach.
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1. Introduction

This contribution deals with uncertain parameters represented by fuzzy sets,
namely with a model-dependent definition of membership functions.

The membership function determines the membership grade of the elements of
the corresponding fuzzy set [3], [4], [6], [7]. Unlike classical set theory, where the
characteristic function range is limited to the bivalent set {0, 1}, the membership
function range is an interval; without loss of generality, we can limit ourselves to [0, 1],
the commonly used range.

For fuzzy numbers, triangular or trapezoidal membership functions are widely
used, for instance; see Figure 1. They are directly defined by the analyst on the basis
of his or her judgment. Inevitably, strong subjective factors influence the definition.
A more objective approach to the definition of a membership function is possible in
situations where P , a set of uncertain input parameters, appears in two associated
models, say M1 and M2, where the output of the model M1 is measured and, through
solving an inverse problem, enables the identification of the input parameters value.
The goal is to assess the uncertainty of the output of the model M2 via fuzzified
input parameters P whose membership function is defined by means of the response
of the model M1.
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Figure 1: Left: A trapezoidal membership function. Right: A triangular membership
function and an α-level set Aα.

Let us consider a space S = Rn, where R stands for the field of real numbers
and n is a natural number. Let µA be a continuous membership function defined
on S and such that its support (that is, the closure of {a ∈ S| µA(a) > 0}) is equal
to a compact convex subset A of S. Next, we define the α-cuts of A (α-level sets) as

Aα = {a ∈ A| µA(a) ≥ α}, where α ∈ [0, 1].

Let us note that A0 ≡ A. We assume that Aα is convex for any α ∈ [0, 1].
Figure 1 depicts two (nonsymmetric) membership functions where A and Aα are

closed intervals. We also observe, see Figure 1 (right), that by knowing Aα for any
α ∈ [0, 1], we can reconstruct µA. That is,

µA(a) = max{α| a ∈ Aα} (1)

for any a ∈ A ⊂ S.
The same idea applied to a finite sequence {αi}n

i=1 ⊂ [0, 1] is used in numerical
algorithms to approximate the membership function of a model output.

To this end, let us consider Φ, a quantity of interest whose value at a is contin-
uously determined by an a-dependent mathematical or computational model. That
is, we can view Φ as a (possibly rather complex) map from A to R. If A is fuzzy, then
RΦ = {y ∈ R| ∃a ∈ A y = Φ(a)}, the range of Φ|A, is also fuzzy and its membership
function can be inferred by Zadeh’s extension principle, see [3], [4], [7], for instance.
The principle says that µRΦ

, the membership function of the fuzzy set RΦ, can be
obtained by applying the following rule

µRΦ
(y) = max

{a∈A| y=Φ(a)}
µA(a) (2)

at each y ∈ RΦ.
Since RΦ is an interval, it can be easier to obtain µΦ not directly from (2), but

from (1) where Aα is replaced by Rα
Φ, the α-cut of RΦ that coincides with the range

of Φ|Aα .
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By virtue of the convexity and compactness assumptions,

Rα
Φ =

[
min
a∈Aα

Φ(a),max
a∈Aα

Φ(a)

]
; (3)

see [4], for example.

Let us note that supremum appears in (1) and (2) in general if the assumptions
on A and µA are weakened.

2. Model-driven membership function

Let us assume that a model M1 is represented by ψ(a, ·), a real continuous func-
tion dependent on a parameter a ∈ B ⊂ S. Moreover, let a be uncertain, let the
output ψ(a, ·) be measured at points {xi}k

i=1, and let the respective recorded values
be denoted by {ri}k

i=1.

Next, let us identify the weighted least squares minimizer

amin = arg min
a∈B

ω(a), where ω(a) =
k∑

i=1

wi(ri − ψ(a, xi))
2 (4)

and wi are positive weights. It is assumed that ω(amin) > 0. The quantity ω will
help to define the membership function describing the fuzziness of the input of the
quantity of interest Φ that is determined by a model M2.

In [2], examples of membership functions are given, but more general options
exist for the definition of the membership function. Take 0 < c1, c2, c3, c3 odd, and

µ1(b) = 1 + c1

(
1−

(
ω(b)

ω(bmin)

)c2)c3

, µ2(b) = 1 + c1

((
ω(bmin)

ω(b)

)c2

− 1

)c3

, (5)

for instance. We observe that ω(b)/ω(bmin) ≥ 1.

For a fixed c1, c2, c3 and i ∈ {1, 2}, the fuzzy set A is then defined by

A = {a ∈ B| µi(a) ∈ [0, 1]} . (6)

A natural choice might be c1 = 1, c2 = 1/2 or c2 = 1, and c3 = 1.

Once the ω-based fuzzy set A and its membership function µA are established, the
membership function µRΦ

associated with the quantity of interest Φ is determined
by Zadeh’s extension principle; see Section 1.

3. Examples

Let us illustrate the above theory by simple examples.
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Figure 2: A permeable embankment separates two reservoirs and is subjected to
infiltration or evaporation. The groundwater level function h is given by (8).

3.1. Two water levels separated by a permeable embankment

Figure 2 shows a cross section of an embankment separating two reservoirs. The
embankment is L units wide and made of a permeable material. The water levels in
reservoirs, namely h0 and hL, are different. We can assume that h0 > hL.

Due to head of water (difference of water levels), groundwater flow and also seep-
age through the embankment exist. The groundwater level is modeled by a smooth
function h defined on the interval [0, L]. To add an external factor, let us introduce
a constant e representing evaporation (e > 0) or infiltration (e < 0); see Figure 2,
where e < 0.

A simple but commonly used approximation h of the true groundwater level in
the embankment is based on Dupuit’s postulates and solves

d

dx

(
−Kh(x)dh

dx
(x)

)
+ e = 0, h(0) = h0, h(L) = hL, (7)

where 0 < K ∈ R is the saturated hydraulic conductivity; see [5]. Since (7) is
equivalent to

d2

dx2
h2(x) = 2

e

K
,

one can easily check that

h2
e,K(x) =

e

K
x2 +

(
h2

L − h2
0

L
− e

K
L

)
x+ h2

0 (8)

is the squared solution to (7).
We will assess seepage q (per unit length) and evaporation rate e in two steps.
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3.1.1. Seepage

Seepage through the embankment at x = L and consistent with (8) is (see [5])
given by

Φ(K) ≡ q(L) = −eL
2

+K
h2

0 − h2
L

2L
, (9)

where Φ indicates that q ≡ q(L) is the quantity of interest whose membership func-
tion µ̂ will be inferred.

We can apply (8) to obtain K. To this end, let us drill two vertical boreholes
into the embankment at x1 = L/3 and x2 = 2L/3 and assess the groundwater level h
there. We obtain r1 and r2, respectively. Since we do not know e in (8) and since
it is easier to measure infiltration rate ein than evaporation rate eev, we measure ein
during rainfall and use e = ein in (8). We assume that ein is measured accurately,
that is, known exactly, but the values r1 and r2 are burdened with errors.

Let us define

ω(ein, K) =
2∑

i=1

(ri − hein,K(xi))
2, µ1(K) = 2−

√
ω(ein, K)

ω(ein, Kmin)
, (10)

where Kmin is identified by the least squares method; see (4) where hein,K(xi) plays
the role of ψ(a, xi). As a consequence, K is fuzzified and a fuzzy interval
A = {K ∈ R| µ1(K) ∈ [0, 1]}, see (6), is considered for the saturated hydraulic
conductivity.

We observe that µ̂ is a shifted “multiple” of µ1 in the sense that each α-cut of
the fuzzy interval determined by µ̂ is obtained as the (h2

0 − h2
L)/(2L) multiple of Aα

shifted by −einL/2; see (9). Consequently, there is no need to solve the minimization
and maximization problems (3) to obtain α-cuts of the fuzzy quantity q = Φ(K) in
this extremely simple example.

For L = 10, h0 = 4, hL = 3, ein = −3 × 10−7, r1 = 4.41, r2 = 4.09, we obtain µ̂
as depicted in Figure 3 (left).

3.1.2. Evaporation

Let us pay attention to evaporation, a new quantity of interest. To evaluate the
evaporation rate eev during a dry-weather period, we again assess h at x1 and x2

with the respective outputs r̃1 and r̃2. Like in (10), we define

ω̃(eev, K) =
2∑

i=1

(r̃i − heev,K(xi))
2 (11)

but, unlike (10), eev ≡ e is not known. For each fixed K, an inverse problem can
be solved, that is, the evaporation rate can be found that minimizes (11). However,
since K is fuzzy, we have to consider K ∈ Aα, where Aα are the α-cuts determined
by µ1 through ri and ein; see (10). The model M1 remains unchanged, but the
model M2 becomes the K-dependent inverse problem now.
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Figure 3: Left: The membership function µ̂ of q. Right: The membership function µ̃
of eev. In both graphs, the vertical axis represents α and the horizontal axis represents
the quantity of interest q and eev, respectively.

To get Rα
eev

= [eα
ev,min, e

α
ev,max], a parallel to (3), we solve

Kα
ev,min = arg min

K∈Aα

min
eev∈Ie

ω̃(eev, K) and Kα
ev,max = arg max

K∈Aα

min
eev∈Ie

ω̃(eev, K), (12)

where Ie is a chosen sufficiently large interval bounding the search. Then

eα
ev,min = arg min

eev∈Ie

ω̃(eev, K
α
ev,min) and eα

ev,max = arg min
eev∈Ie

ω̃(eev, K
α
ev,max). (13)

Since only a finite number of levels α is used in calculations, there is no need to
solve (13) in practice. The values eα

ev,min and eα
ev,max are stored in the course of

solving (12).
For r̃1 = 2.90 and r̃2 = 2.60 entering the calculations, the membership function µ̃

of eev is depicted in Figure 3 (right).
The graph, which might seem strange at first glance, shows that eev is repre-

sented by a crisp value at the level α = 1 because also the 1-cut of A is a single-
ton set comprising a unique K. If we start to increase the amount of uncertainty
in K by decreasing α, we also decrease eα

ev,min as the solution of the min-min prob-
lem (12)-(13). For α < 0.94, the condition K ∈ Aα is no longer an active constraint
in the minimization of ω̃ with respect to eev and the minimizer eα

ev,min is no longer
dependent on α.

Problem (12) is, in fact, a sort of best- and worst-case scenario problems. Indeed,
in the min-min problem, eev and K “cooperate” to minimize (11), whereas K is an
“antagonist” of eev in the max-min problem (12) in which the minimizer of ω̃ is
sought under the worst conditions that K can produce.
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4. Conclusions

The ideas presented in Section 1 are applicable to parameters belonging to other
spaces than R or Rn. We can, for instance, take S ⊂ C([d1, d2]), where C([d1, d2])
stands for the space of continuous functions on an interval [d1, d2], and consider
a problem M1 represented by, say, an ordinary differential equation (ODE) Dau = f
supplemented by initial or boundary conditions, where Da is an a-dependent dif-
ferential operator, a ∈ S. Let us assume that inaccurate measurements {ri}n

i=1

are associated with ua(xi), the ODE solution at {xi}n
i=1. Under some assumptions,

a function bmin ∈ S can be identified by the least squares method as in (4). Con-
sequently, the fuzzification of the identified parameter-function can be done as in
Section 2.

If a scalar quantity of interest represents the output of an a-dependent Model 2,
Zadeh’s principle can again be applied to obtain the membership function associated
with the the quantity of interest. Besides a, Model 2 can depend on other parame-
ters either crisp or fuzzy. In calculations, S is approximated by a set of functions
controlled by a finite number of parameters. As a consequence, the approximate
problem is formulated in terms of finite dimensional fuzzy sets and their α-cuts.
Dealing with the latter can still be a rather hard task because Aα will enter the
minimization (maximization) problem (3) as a constraint determined by (5) and the
Model 1 output. Such constraint can be (and usually will be) non-linear.

The common concept of membership functions is sometimes awkward. Tradi-
tionally, the range of membership functions is limited to (subsets of) [0, 1]. This
limits flexibility in the grading of fuzzy uncertainty. To make things easier, we can
adopt the approach presented in [1] within the framework of info-gap decision the-
ory and use membership functions in an “upside down” form where the amount of
uncertainty is minimal at α = 0 and increases with increasing α. In this approach,
the upper bound of α is not limited to 1, but can be arbitrary large and can even
increase in the course of computing. An example can be inferred from µ1 in (5) as
follows

µ̂A(b) = c1

((
ω(b)

ω(bmin)

)c2

− 1

)c3

,

where c1, c2, and c3 are positive constants.
The α-cuts associated with such “upside down” membership functions are defined

by Aα = {a ∈ A| µA(a) ≤ α}.
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