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Abstract: This contribution summarizes an implicit constitutive solution
scheme of the elastoplastic problem containing the Mohr-Coulomb yield cri-
terion, a nonassociative flow rule, and a nonlinear isotropic hardening. The
presented scheme builds upon the subdifferential formulation of the flow rule
leading to several improvements. Mainly, it is possible to detect a position
of the unknown stress tensor on the Mohr-Coulomb pyramid without blind
guesswork. Further, a simplified construction of the consistent tangent opera-
tor is introduced. The presented results are important for an efficient solution
of incremental boundary value elastoplastic problems.
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1. Introduction

We focus on a solution of an elastoplastic constitutive problem containing the
Mohr-Coulomb yield criterion and a consequent construction of the consistent tan-
gent operator which is important for Newton-like methods in elastoplasticity. This
constitutive problem is broadly exploited in soil and rock mechanics and many var-
ious solution schemes were suggested. For their detailed overview and historical
development, we refer the recent papers [1] and [3], respectively. Nevertheless, it
is still a challenging problem due to its technical complexity. It follows from the
fact that the Mohr-Coulomb yield surface is a hexagonal pyramid aligned with the
hydrostatic axis in terms of principal stresses.

We consider the Mohr-Coulomb constitutive initial-value problem introduced in
[2, Sections 6.3–6.6] which can optionally contain the nonassociative flow rule and
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the nonlinear isotropic hardening. The solution scheme mainly depends on a formu-
lation of the problem and its discretization. For example, the scheme based on the
multisurface representation of the flow rule and the implicit Euler discretization is
derived in detail in [2, Section 8.2]. To improve this conventional scheme, we use
the subdifferential formulation of the flow rule instead of the multisurface one. The
subdifferential-based implicit solution concept was proposed in [5] for yield criteria
containing 1 or 2 singular points on the yield surface. Then it was extended to the
Mohr-Coulomb problem in [4]. Here, we summarize the main results from [4] and
write the solution scheme in more readable form.

The rest of the contribution is organized as follows. In Section 2, the Mohr-
Coulomb constitutive problem discretized by the implicit Euler method is introduced.
Section 3 contains selected theoretical results characterizing the problem. Based on
these results, the improved solution scheme is introduced, see Section 4. Finally,
some concluding remarks are mentioned in Section 5.

Besides scalar variables, we work mainly with second and fourth order tensors.
For easier orientation in the text, we denote the second order tensors by bold letters
and the fourth order tensors by capital blackboard letters, e.g., De or I. The sym-
bols ⊗ and : mean the tensor product and the biscalar product, respectively (see,
e.g., [2]). We also use the following notation: R+ := {z ∈ R; z ≥ 0} and R

3×3
sym for

the space of symmetric, second order tensors.

2. Formulation of the discretized problem

Let σ, ε, εp ∈ R
3×3
sym, ε̄

p, κ, λ ∈ R+ denote the stress tensor, the strain tensor, the
plastic strain tensor, the hardening variable, the thermodynamical hardening force,
and the plastic multiplier, respectively. The spectral decomposition of the stress
tensor reads as:

σ =
3

∑

i=1

σiei ⊗ ei, σ1 ≥ σ2 ≥ σ3, (1)

where σ1, σ2, σ3 are the ordered eigenvalues (the principal stresses) of σ and e1, e2, e3
are the corresponding eigenvectors. Recall that σ1, σ2, σ3 are uniquely defined with
respect to the prescribed ordering. The Mohr-Coulomb yield function and the related
plastic potential are defined as follows:

f(σ, κ) = (1 + sinφ)σ1 − (1− sin φ)σ3 − 2(c0 + κ) cosφ, (2)

g(σ) = (1 + sinψ)σ1 − (1− sinψ)σ3, (3)

respectively. Here, the material parameters c0 > 0, φ, ψ ∈ (0, π/2) represent the
initial cohesion, the friction angle, and the dilatancy angle, respectively. It is worth
mentioning that g is a convex function and thus one can use its subdifferential ∂g(σ).
Further, define the fourth order tensor

De =
1

3
(3K − 2G)I ⊗ I + 2GI, (4)
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representing linear and isotropic elastic response, where K,G > 0 denote the bulk
and shear moduli, respectively, I is the second order identity tensor ([I]ij = δij ,
i, j = 1, 2, 3), and I is the fourth order identity tensor ([I]ijkl = δikδjl, i, j, k, l =
1, 2, 3). Finally, it holds that κ = H(ε̄p), where H is a nondecreasing, continuous,
and piecewise smooth function satisfying H(0) = 0. As in [2], we let this function in
an abstract form.

The elastoplastic constitutive initial value problem is defined on a pseudo-time
interval [0, T ]. With respect to the implicit Euler discretization, we consider a par-
tition 0 = t0 < t1 < . . . < tk < . . . < tN = T , fix a step k and denote σ := σ(tk),
ε := ε(tk), ε

p := ε
p(tk), ε̄

p := ε̄p(tk), △λ = λ(tk) − λ(tk−1), ε̄
p,tr := ε̄p(tk−1),

ε
tr := ε(tk) − ε

p(tk−1), and σ
tr := De : εtr. Here, the superscript tr is the stan-

dard notation for the so-called trial variables which are known (see, e.g., [2]). The
k-th step problem reads as:

Given σ
tr and ε̄p,tr. Find σ, ε̄p, and △λ satisfying:

σ = σ
tr −△λDe : ν, ν ∈ ∂g(σ),

ε̄p = ε̄p,tr +△λ(2 cosφ),

△λ ≥ 0, f(σ, H(ε̄p)) ≤ 0, △λf(σ, H(ε̄p)) = 0.











(5)

Notice that the remaining unknown variables can be computed from the solution
components σ, ε̄p, and △λ. For example, it holds that εp(tk) = ε(tk)−D

−1
e : σ(tk).

3. Useful theoretical results

In this section, we summarize some theoretical results concerning problem (5).
This framework is important for understanding of the solution scheme introduced in
Section 4.

The first result enables to write problem (5) only in terms of principal stresses.
For its derivation, it was necessary to find the subdifferential ∂g(σ) in closed form
with respect to (3), see [4, Lemma 4.1].

Lemma 1. Let (σ, ε̄p,△λ) be a solution to (5) for given σ
tr and ε̄p,tr. Let σi, σ

tr
i , i =

1, 2, 3, be the ordered eigenvalues of σ and σ
tr, respectively. Then (σ1, σ2, σ3, ε̄

p,△λ)
is a solution to:

σi = σtri −△λ
[

2
3
(3K − 2G) sinψ + 2Gνi

]

, i = 1, 2, 3,

ε̄p = ε̄p,tr +△λ(2 cosφ),

△λ ≥ 0, (1 + sin φ)σ1 − (1− sin φ)σ3 − 2(c0 +H(ε̄p)) cosφ ≤ 0,

△λ [(1 + sinφ)σ1 − (1− sin φ)σ3 − 2(c0 +H(ε̄p)) cosφ] = 0,



















(6)

where ν1, ν2, ν3 are the eigenvalues of ν ∈ ∂g(σ) satisfying

1 + sinψ ≥ ν1 ≥ ν2 ≥ ν3 ≥ −1 + sinψ, ν1 + ν2 + ν3 = 2 sinψ,

(ν1 − 1− sinψ)(σ1 − σ2) = 0, (ν3 + 1− sinψ)(σ2 − σ3) = 0.

}

(7)
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Conversely, if (σ1, σ2, σ3, ε̄
p,△λ) is a solution to (6) then (σ, ε̄p,△λ) solves (5),

where σ =
∑3

i=1 σie
tr
i ⊗etri and etr1 , e

tr
2 , e

tr
3 are the eigenvectors of σtr with respect to

the ordering σtr1 ≥ σtr2 ≥ σtr3 .

A further simplification of the problem is possible under additional assumptions
on the solution to problem (6). First, assume △λ = 0. Then the elastic response
appears and it holds: σi = σtri , i = 1, 2, 3, ε̄p = ε̄p,tr, and

f(σtr, H(ε̄p,tr)) = (1 + sinφ)σtr1 − (1− sinφ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ ≤ 0. (8)

In fact, (8) is a necessary and sufficient condition for △λ = 0. If △λ > 0 then the
unknown principal stresses lie on the yield surface of the Mohr-Coulomb pyramid
as follows from (6)4. We distinguish four possible positions on the yield surface:
the smooth portion (σ1 > σ2 > σ3), the left edge (σ1 = σ2 > σ3), the right edge
(σ1 > σ2 = σ3), and the apex (σ1 = σ2 = σ3). This terminology follows from [2].
For each position, one can introduce a special solution scheme, the so-called return-
mapping scheme. These schemes are introduced in Sections 4.4-4.7. Briefly speaking,
nonlinear equations qtrs (△λ) = 0, qtrl (△λ) = 0, qtrr (△λ) = 0, and qtra (△λ) = 0 are
derived within these schemes, respectively. After finding their solutions, one can
easily compute the remaining unknowns. However, only one type of the return-
mapping usually leads to the solution of problem (6) and the remaining schemes
produce incorrect solutions. To find the correct scheme, we define the intervals Ctr

s ,
Ctr
l , C

tr
r , C

tr
a introduced in Section 4.1. These intervals are mutually disjoint, their

union is equal to R+, and either Ctr
l = ∅ or Ctr

r = ∅. For example, the return to the
smooth portion appears if the solution of qtrs (△λ) = 0 belongs to Ctr

s . Analogous
criteria hold for the remaining return types.

It seems that one must successively solve the nonlinear equations with qtrs , q
tr
l ,

qtrr , q
tr
a to find the correct scheme. Similar blind guesswork is also introduced, e.g.,

in [2, Section 8.2]. Nevertheless, the presented approach enables to derive a priori
decision criteria to detect the stress position on the yield surface, without any blind
guesswork. To this end, we introduce the following useful result [4, Lemma 4.2].

Lemma 2. There exists a unique function qtr : R+ → R satisfying:

(i) qtr|Ctr
s
= qtrs , q

tr|Ctr

l
= qtrl , q

tr|Ctr
r
= qtrr , q

tr|Ctr
a
= qtra .

(ii) qtr is continuous, piecewise smooth, and decreasing in R+.

(iii) qtr(0) = f(σtr, H(ε̄p,tr)).

(iv) qtr(γ) → −∞ as γ → +∞.

The properties of the function qtr have many important consequences. First, they
imply the main solvability result [4, Theorems 4.4–4.6].
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Theorem 3. Problems (5) and (6) have unique solutions and the solution compo-
nent △λ satisfies qtr(△λ) = 0.

Second, one can easily detect one of the intervals Ctr
s , C

tr
l , C

tr
r , C

tr
a where val-

ues of qtr change the sign. It leads to the a priori decision criteria introduced in
Section 4.2. Finally, by Lemma 2, one can easily investigate properties of the stress-
strain constitutive operator: σ = T (εtr; ε̄p,tr). It is expected that this mapping is
Lipschitz continuous and semismooth as follows from the discussion in [4].

The generalized derivative (in Clark’s sense) of T represents the consistent tan-
gent operator. This derivative defines the fourth order tensor T, i.e., if T is differ-
entiable at (εtr; ε̄p,tr) then T = ∂T /∂εtr. The formulas defining T for each stress
position are introduced in Sections 4.3-4.7. In case of the associative plasticity, i.e.,
if ψ = φ, the tangent stiffness matrix is symmetric, otherwise it is nonsymmetric.

Let us note that the stress-strain operator is substituted into the balance equation
leading to the incremental boundary value elastoplastic problem. The consistent
tangent operator is used for assembling of the tangent stiffness matrix which is
important for solving this problem by Newton-like methods [2, 4, 5].

4. Solution scheme

This section is organized as follows. Section 4.1 contains an auxilliary notation.
In Section 4.2, a priori decision criteria for the elastic response and the returns to the
smooth portion, the left edge, the right edge, and the apex of the yield surface are
summarized. The solution schemes for these cases are introduced in parallel Sections
4.3–4.7, respectively.

4.1. Auxilliary notation

Recall that εtr and ε̄p,tr are known in (5). The ordered eigenvalues εtr1 ≥ εtr2 ≥ εtr3
of εtr can be determined using the Haigh-Westergaard coordinates (see, e.g., [2]).
Other auxilliary notation is summarized below:

• σtri = 1
3
(3K − 2G)(εtr1 + εtr2 + εtr3 ) + 2Gεtri , i = 1, 2, 3 — trial principal stresses

• E
tr,2, [Etr,2]ijkl = δik[ε

tr]lj + δjl[ε
tr]ik — Fréchet derivative of (εtr)2

• γtrs,l =
σtr1 − σtr2

2G(1 + sinψ)
, γtrs,r =

σtr2 − σtr3
2G(1− sinψ)

,

• γtrl,a =
σtr1 + σtr2 − 2σtr3
2G(3− sinψ)

, γtrr,a =
2σtr1 − σtr2 − σtr3
2G(3 + sinψ)

• Ctr
s =

(

0,min{γtrs,l, γ
tr
s,r}

)

, Ctr
l =

[

γtrs,l, γ
tr
l,a

)

,

• Ctr
r =

[

γtrs,r, γ
tr
r,a

)

, Ctr
a =

[

max{γtrl,a, γ
tr
r,a},+∞

)

• S = 4
3
(3K − 2G) sinψ sinφ+ 4G(1 + sinψ sin φ)
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• L = 4
3
(3K − 2G) sinψ sinφ+G(1 + sinψ)(1 + sinφ) + 2G(1− sinψ)(1− sinφ)

• R = 4
3
(3K − 2G) sinψ sinφ+2G(1 + sinψ)(1 + sin φ) +G(1− sinψ)(1− sinφ)

• A = 4K sinψ sin φ

• h(γ) = 2 [c0 +H (ε̄p,tr + γ(2 cosφ))] cosφ

• qtrs (γ) = (1 + sinφ)σtr1 − (1− sinφ)σtr3 − h(γ)− Sγ

• qtrl (γ) =
1
2
(1 + sinφ)(σtr1 + σtr2 )− (1− sin φ)σtr3 − h(γ)− Lγ

• qtrr (γ) = (1 + sinφ)σtr1 − 1
2
(1− sinφ)(σtr2 + σtr3 )− h(γ)−Rγ

• qtra (γ) =
2
3
(σtr1 + σtr2 + σtr3 ) sinφ− h(γ)− Aγ

• H1 = h′(△λ) = 4H ′(ε̄p,tr +△λ(2 cosφ)) cos2 φ — possibly, we take the deriva-
tive from the left if h′(△λ) does not exist

4.2. A priori decision criteria

The criteria introduced below are mutually disjoint, i.e., for a given pair (εtr, ε̄p,tr),
only one possibility is realized.

The elastic response:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ ≤ 0

The return to the smooth portion of the yield surface:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ > 0

• qtrs (min{γtrs,l, γ
tr
s,r}) < 0

The return to the left edge of the yield surface:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ > 0

• γtrs,l < γtrl,a, q
tr
l (γ

tr
s,l) ≥ 0, qtrl (γ

tr
l,a) < 0

The return to the right edge of the yield surface:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ > 0

• γtrs,r < γtrr,a, q
tr
r (γ

tr
s,r) ≥ 0, qtrr (γ

tr
r,a) < 0

The return to the apex of the yield surface:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ > 0

• qtra (max{γtrl,a, γ
tr
r,a}) ≥ 0

Notice that other very useful necessary conditions for the returns to the smooth
portion, the left and right edges are introduced in Sections 4.4–4.6, respectively.
These conditions were derived in [4] and simplify the construction of the consistent
tangent operator.
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4.3. Solution scheme for the elastic response

• △λ = 0

• σi = σtri , i = 1, 2, 3

• ε̄p = ε̄p,tr

• σ = σ
tr

• T = De

4.4. Solution scheme for the return to the smooth portion

It is worth mentioning that εtr1 > εtr2 > εtr3 is a necessary condition for this return.
Therefore, the following auxilliary formulas are well-defined:

E
tr
i =

(εtr − εtrj I)(ε
tr − εtrk I)

(εtri − εtrj )(ε
tr
i − εtrk )

, i 6= j 6= k 6= i, i = 1, 2, 3,

F
tr
s,φ = 2G(1 + sinφ)Etr

1 − 2G(1− sin φ)Etr
3 +

2

3
(3K − 2G) sinφI,

F
tr
s,ψ = 2G(1 + sinψ)Etr

1 − 2G(1− sinψ)Etr
3 +

2

3
(3K − 2G) sinψI,

E
tr
i =

E
tr,2 − (εtrj + εtrk )I− (2εtri − εtrj − εtrk )E

tr
i ⊗E

tr
i

(εtri − εtrj )(ε
tr
i − εtrk )

−
(εtrj − εtrk )[E

tr
j ⊗E

tr
j −E

tr
k ⊗E

tr
k ]

(εtri − εtrj )(ε
tr
i − εtrk )

, i 6= j 6= k 6= i, i = 1, 2, 3.

It is well-known that Etr
1 ,E

tr
2 ,E

tr
3 define the eigenprojections of εtr [2]. Further, it

holds: Etr
i = ∂εtri /∂ε

tr and E
tr
i = ∂Etr

i /∂ε
tr, i = 1, 2, 3. The solution scheme for the

return to the smooth portion reads as:

• △λ ∈ Ctr
s and solves qtrs (△λ) = 0

• σ1 = σtr1 −△λ
[

2
3
(3K − 2G) sinψ + 2G(1 + sinψ)

]

• σ2 = σtr2 −△λ
[

2
3
(3K − 2G) sinψ

]

• σ3 = σtr3 −△λ
[

2
3
(3K − 2G) sinψ − 2G(1− sinψ)

]

• ε̄p = ε̄p,tr +△λ(2 cosφ)

• σ = σ1E
tr
1 + σ2E

tr
2 + σ3E

tr
3

• T =
∑3

i=1

[

σiE
tr
i + 2GEtr

i ⊗E
tr
i

]

+ 1
3
(3K − 2G)I ⊗ I −

1

S +H1
F
tr
s,ψ ⊗ F

tr
s,φ
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4.5. Solution scheme for the return to the left edge

For this return, the only one sharp inequality is guaranteed: εtr2 > εtr3 . We use
the following auxilliary and well-defined formulas:

E
tr
3 =

(εtr − εtr1 I)(ε
tr − εtr2 I)

(εtr3 − εtr1 )(ε
tr
3 − εtr2 )

, E
tr
12 = I −E

tr
3 ,

F
tr
l,φ = G(1 + sinφ)Etr

12 − 2G(1− sinφ)Etr
3 +

2

3
(3K − 2G) sinφI,

F
tr
l,ψ = G(1 + sinψ)Etr

12 − 2G(1− sinψ)Etr
3 +

2

3
(3K − 2G) sinψI,

E
tr
3 =

E
tr,2 − (εtr1 + εtr2 )I− [εtr ⊗E

tr
12 +E

tr
12 ⊗ ε

tr] + (εtr1 + εtr2 )E
tr
12 ⊗E

tr
12

(εtr3 − εtr1 )(ε
tr
3 − εtr2 )

+
(εtr1 + εtr2 − 2εtr3 )E

tr
3 ⊗E

tr
3 + εtr3 [E

tr
12 ⊗E

tr
3 +E

tr
3 ⊗E

tr
12]

(εtr3 − εtr1 )(ε
tr
3 − εtr2 )

.

It is possible to prove that the definitions of Etr3 introduced here and in Section 4.4
are equivalent under the assumption εtr1 > εtr2 > εtr3 . The solution scheme for the
return to the left edge reads as:

• △λ ∈ Ctr
l and solves qtrl (△λ) = 0

• σ1 = σ2 =
1
2
(σtr1 + σtr2 )−△λ

[

2
3
(3K − 2G) sinψ +G(1 + sinψ)

]

• σ3 = σtr3 −△λ
[

2
3
(3K − 2G) sinψ − 2G(1− sinψ)

]

• ε̄p = ε̄p,tr +△λ(2 cosφ)

• σ = σ1E
tr
12 + σ3E

tr
3

•







T = (σ3 − σ1)E
tr
3 +GEtr

12 ⊗E
tr
12 + 2GEtr

3 ⊗E
tr
3 + 1

3
(3K − 2G)I ⊗ I

−
1

L+H1

F
tr
l,ψ ⊗ F

tr
l,φ

4.6. Solution scheme for the return to the right edge

For this return, the inequality εtr1 > εtr2 is guaranteed. We use the following
auxilliary and well-defined formulas:

E
tr
1 =

(εtr − εtr2 I)(ε
tr − εtr3 I)

(εtr1 − εtr2 )(ε
tr
1 − εtr3 )

, E
tr
23 = I −E

tr
1 ,

F
tr
r,φ = 2G(1 + sinφ)Etr

1 −G(1− sin φ)Etr
23 +

2

3
(3K − 2G) sinφI,

F
tr
r,ψ = 2G(1 + sinψ)Etr

1 −G(1− sinψ)Etr
23 +

2

3
(3K − 2G) sinψI,

E
tr
1 =

E
tr,2 − (εtr2 + εtr3 )I− [εtr ⊗E

tr
23 +E

tr
23 ⊗ ε

tr] + (εtr2 + εtr3 )E
tr
23 ⊗E

tr
23

(εtr1 − εtr2 )(ε
tr
1 − εtr2 )

+
(εtr2 + εtr3 − 2εtr1 )E

tr
1 ⊗E1 + εtr1 [E

tr
23 ⊗E

tr
1 +E

tr
1 ⊗E

tr
23]

(εtr1 − εtr2 )(ε
tr
1 − εtr3 )

.
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It is possible to prove that the definitions of Etr1 introduced here and in Section 4.4
are equivalent under the assumption εtr1 > εtr2 > εtr3 . The solution scheme for the
return to the right edge reads as:

• △λ ∈ Ctr
r and solves qtrr (△λ) = 0

• σ1 = σtr1 −△λ
[

2
3
(3K − 2G) sinψ + 2G(1 + sinψ)

]

• σ2 = σ3 =
1
2
(σtr2 + σtr3 )−△λ

[

2
3
(3K − 2G) sinψ −G(1− sinψ)

]

• ε̄p = ε̄p,tr +△λ(2 cosφ)

• σ = σ1E
tr
1 + σ3E

tr
23

•







T = (σ1 − σ3)E
tr
1 + 2GEtr

1 ⊗E
tr
1 +GEtr

23 ⊗E
tr
23 +

1
3
(3K − 2G)I ⊗ I

−
1

R +H1

F
tr
r,ψ ⊗ F

tr
r,φ

4.7. Solution scheme for the return to the apex

• △λ ∈ Ctr
a and solves qtra (△λ) = 0

• σ1 = σ2 = σ3 =
1
3
(σtr1 + σtr2 + σtr3 )−△λ[2K sinψ]

• ε̄p = ε̄p,tr +△λ(2 cosφ)

• σ = σ1I

• T = K

(

1−
A

A+H1

)

I ⊗ I

5. Conclusion

The subdifferential-based constitutive solution scheme for the Mohr-Coulomb
model was introduced. This technique has several advantages in comparison to the
current ones. First, it enabled a deeper analysis of the constitutive problem. Sec-
ond, a priori decision criteria were derived for each position of the unknown stress
tensor on the yield surface. Finally, for each return type, we specified the neces-
sary conditions on multiplicity of εtr1 , ε

tr
2 , ε

tr
3 . Such conditions are crucial for the

correct definition of the consistent tangent operator T. Without this knowledge, an
additional branching in the definition of T must be introduced as in [2, Appendix A].

The presented solution schemes were implemented in Matlab codes for the anal-
ysis of slope stability in 2D and 3D. The codes are publicly available in [6] and the
used numerical techniques are described in [4].
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