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Abstract: Analysis of a non-classically damped engineering structure, which

is subjected to an external excitation, leads to the solution of a system of

second order ordinary differential equations. Although there exists a large

variety of powerful numerical methods to accomplish this task, in some cases

it is convenient to formulate the explicit inversion of the respective quadratic

fundamental system. The presented contribution uses and extends concepts

in matrix polynomial theory and proposes an implementation of the inversion

problem.
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1. Introduction

Solution of matrix differential equations is closely associated to the theory of ma-
trix polynomials. The very important class of the second order matrix differential
equations has a wide variety of applications, among others in vibration analysis in
civil or mechanical engineering or in the analysis of oscillation circuits in electrical
engineering. The motivation behind this contribution originates from the vibration
analysis of non-classically damped engineering structures, which are subjected to
a random external excitation. In case of non-stationary excitation, the numerical
integration of the differential system gives only a very limited information on the
stochastic character of the response. In such cases it is more convenient to formu-
late the exact or approximate analytical solution, if possible, and to use it for an
assessment of the stochastic properties of the system response. Such a procedure is
provided by, e.g., the spectral decomposition method [2].

The behaviour of the structure is described by a relation:

AÜ(ω, t) +BU̇(ω, t) +CU(ω, t) = f(ω, t) (1)

where the coefficient matrices A,B,C ∈ Rn×n are considered to be constant, real
and symmetric, U(ω, t) is a deterministic function describing transformation of the
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random excitation and f describes properties of the random excitation. The Laplace
transform changes the differential system into an algebraic one

(Ap2 +Bp+C)U⋆(ω, p) = Q(p)U⋆(ω, p) = f⋆(ω, p) , (2)

whose solution is given by

U⋆(ω, p) = Q(p)−1f⋆(ω, p) . (3)

The inverse of the matrix polynomial Q(p)−1 can be written in a form of a sum [1]

Q(p)−1 =

n∑

j=1

(
Sj

1

p− pj
+ Sj

1

p− pj

)
(4)

where pj are the roots of detQ(p) (generalized eigenvalues of Q) and matrices Sj

are rank 1 matrices related to the generalized eigenvectors of Q. Solution of (1) is
finally given as

U(ω, t) =
2n∑

j=1

Sj

∫ t

0

e
pj(t−τ)f(ω, τ)dτ. (5)

In the following section, the basics of matrix polynomial theory will be introduced
according to the monograph by Gohberg et al. [1]. Sections 3 and 4 will be devoted
to the lemma which leads to an advantageous formulation of matrices Sj in (4) and
to a computational algorithm.

2. Basics of the matrix polynomials theory

Definition. Let l > 0 and Aj ∈ R
n×n, j = 0, . . . , l, Al 6= 0 be square matrices.

The matrix polynomial L(λ) of degree l is defined as

L(λ) =
l∑

j=0

Ajλ
j . (6)

An eigenvalue λ of the matrix polynomial L(λ) is the solution of

L(λ) = 0 or detL(λ) = 0 , (7)

whilst the corresponding (right) eigenvector x and left eigenvector y is any non-zero

solution of

L(λ)x =

l∑

j=0

Ajλ
jx = 0 resp. yTL(λ) =

l∑

j=0

yTAjλ
j = 0 . (8)

Two matrix polynomials M(λ) and N(λ) are equivalent, M(λ) ≃ N(λ), if there exist

two matrix polynomials E(λ) and F(λ) with constant determinants such that

M(λ) = E(λ)N(λ)F(λ). (9)

25



A linearization of a matrix polynomial L(λ) of dimension n and degree l is a linear

matrix polynomial Eλ−H of dimension nl where

L(λ) ≃ (Eλ−H) . (10)

The linearization matrix A ∈ Rnl×nl is such a matrix that L(λ) ≃ Iλ−A.

The concept of linearization is traditionally used for computation of eigenvalues
of a matrix polynomial using standard methods for the linear eigenvalue problem [4].
The linearization is not uniquely defined. However, all linearizations share the same
set of eigenvalues. The commonly used linearization assumes E = I and uses a block-
-matrix H consisting of terms −A−1

l Ai, i = 0, . . . , l − 1 in the last row and identity
matrices in positions of the first superdiagonal. However, there exist also other
forms, suitable for particular purposes. One of the most interesting examples is the
symmetric linearization, which assures symmetry of the matrices E and H due to
symmetry in individual matrices Ai, see [3].

Definition. A standard pair of a matrix polynomial is a pair of matrices (X,T),
X ∈ Cn×nl,T ∈ Cnl×nl such that the matrix Z of dimension (nl × nl), where

Z =




X

XT
...

AlXTl−1




is regular and
l∑

0

AjXTj = 0 .

The standard pairs are not unique. However, if T is diagonal (or in a Jordan
form in the case where some eigenvalues have higher multiplicity), the matrix X will
be uniquely defined. Its columns will be formed by eigenvectors corresponding to
the respective eigenvalues. Such a standard pair (X,T) is called a Jordan pair.

Definition A Jordan triple is called a triple of matrices (X,T,Y), where (X,T)
is a Jordan pair and Y ∈ Cnl×n satisfies:

XTiY = 0 i = 0, . . . , l − 1 ,

AlXTl−1Y = I .
(11)

3. Inverse of matrix polynomial

Lemma 1. Let all eigenvalues of the matrix polynomial L(λ) be non-zero and the

leading coefficient matrix be regular. Then the rows of the matrix Y of the Jordan

triple (X,T,Y) form the left eigenvectors of L(λ), i.e.

k∑

j=0

TjYAj = 0 . (12)
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Proof: Let l = 2. The proof assumes the linearization

[
−
(

I 0
0 A2

)
λ+

(
0 I

−A0 −A1

)]
.

Let Z =

(
X

XT

)
. Because (X,T) is a Jordan pair it holds that

(
0 I

−A0 −A1

)
Z =

(
I 0
0 A2

)
ZT. (13)

Right multiplication by Z−1 and further transformation leads to

Z−1

(
I 0
0 A−1

2

)(
0 I

−A0 −A1

)
= TZ−1. (14)

Let T =

(
T1 0
0 T2

)
and Z−1 =

(
Z1 Z2

Z3 Z4

)
, where Zi i = 1, . . . , 4 are square

blocks of dimension n. Expansion of the last expression (14) gives

(
−Z2A

−1
2 A0 Z1 − Z2A

−1
2 A1

−Z4A
−1
2 A0 Z3 − Z4A

−1
2 A1

)
=

(
T1Z1 T1Z2

T2Z3 T2Z4

)
. (15)

Now, comparing first columns

Z1 = −T−1
1 Z2A

−1
2 A0 ,

Z3 = −T−1
2 Z4A

−1
2 A0 ,

and substituting into the second columns (15) then writing in the matrix form leads
to

−T−1

(
Z2A

−1
2

Z4A
−1
2

)
A0 −

(
Z2A

−1
2

Z4A
−1
2

)
A1 = T

(
Z2

Z4

)
.

Denoting Y = Z−1

(
0

A−1
2

)
=

(
Z2A

−1
2

Z4A
−1
2

)
, and multiplying by the matrix T from

the left hand side leads to

−YA0 −TYA1 = T2YA2.

The proof for general l can be performed in a similar manner: the key step is the
expansion of the Z−1 =

(
Z1 . . .Zl

)
, where Zi i = 1, . . . , l are the column blocks.

In the next section, it will be supposed that Al is regular. The inverse matrix
polynomial can be written using its Jordan triple in the following form [1]:

(L(λ))−1 = X(λI−T)−1Y (16)
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If T is diagonal, e.g., if all eigenvalues λi are distinct, it holds

(λI−T)−1 = diag

(
1

λ− λi

)

and equation (16) can be rewritten as

(L(λ))−1 =
ln∑

j=1

1

λ− λj

xjy
T

j (17)

where xj are columns of X and yT

j are rows of Y.
By respecting the character of the underlying physical problem, it is possible to

assume that all matrices Ai are symmetrical and that T is diagonal and regular with
distinct elements. The matrix Y is defined by the conditions (11). It remains to
show that there exists a matrix D such that YTD = X.

0T =
(∑

AiY
TDTi

)T
(18)

=
∑

TiDYAi (19)

=
∑

DTi
TiDYAi =

∑
TiYAi (20)

where the symbol DTi
means i-multiple transpositions.

The last equation (20) implies symmetry of D, i.e. DT = TD and thus for
elements dij of D it holds: di,j = 0 ⇔ ti

tj
6= 1.

This means that if the diagonal elements of T are distinct, the matrix D is
diagonal and regular. The same result can be reached using a different reasoning:
due to Lemma 1 the third term of the Jordan triple is formed by the left eigenvectors.
For symmetric matrices Aj the right and left generalized eigenvectors coincide. This
means that the corresponding columns of YT and X differ by multiplicative constants
and so the matrix D has to be diagonal.

Under the assumptions introduced above, it is possible to find such eigenvectors X
that (X,T,XT) forms the Jordan triple. The conditions (11) attain the form:

XTiXT = 0 i = 0, . . . , l − 1 ,

AlXTl−1XT = I .
(21)

The only unknown step in the procedure is selection of the proper scaling con-
stants of the eigenvectors X.

4. Formulation of the algorithm

The inverse of a matrix polynomial L(λ) can be formulated using the following
procedure

1. Solve the linear eigenvalue problem with some linearization matrix to obtain
a pair of matrices (X̃,T).
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2. Find the diagonal matrix D such that X = X̃D and (X,T) satisfy (21). Its
existence was proven before.
According to (11) we now have

(
X̃DX̃T

A2X̃TDX̃T

)
=

(
0
I

)
. (22)

Substituting ∆ = X̃D into (22) the equation transforms into
(

X̃

A2X̃T

)
∆T =

(
0
I

)
. (23)

Because (∆)ij = xijdj and xij are known, it is sufficient to solve the system (23)
for only one column of ∆ and the corresponding column of the right hand side.
Selection of such a column depends on the distribution of non-zero elements of
rows of the matrix X̃.

3. The diagonal elements of D are computed as ratios

dii = ∆ji/xij , (24)

supposing that the j-th column has been used. Finally, set X = YT = X̃
√
D.

4. The inverse of the matrix polynomial can be computed using relation (17)
where both xj and yT

j are columns of X.
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