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1. Introduction

Performing a linear transformation y = Ax with an n× n matrix A requires n2

operations. We talk about a fast implementation of such a transformation if we can
lower the number of operations, such as by using the Fast FourierTransform (FFT) [3],
which caused a revolution in signal processing by bringing the cost down to n log n.

Hand-in-hand with the operation cost go memory requirements. In a straightfor-
ward implementation we need additional n memory locations. It may be desirable to
perform the transformation in place, that is, the output y is stored directly into the
locations occupied by the input x, requiring possibly some small number, indepen-
dent of n, of memory locations. Fast implementations usually allow such memory
savings.

Not long after the FFT technique for reducing the cost similar results appeared
for Walsh-Hadamard transforms [5, 12]; this development has continued to the
present [13] and now includes Hadamard transforms other than those based on Walsh
matrices [1]. Surprisingly, all of these results appear to be based on considerations
following those in the development of the FFT.
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In this paper we offer a different way to derive fast and in-place algorithms,
not only for Hadamard matrices but also for their generalization, Hadamard matrix
polynomials introduced in Section 3. Our approach is based on the factorization of
invertible matrix polynomials discussed in Section 2 and allows not only the deriva-
tion of theoretical results but also, being based on a simple deterministic algorithm,
the capacity to determine by computational means if a fast implementation exists in
particular cases. That is presented in Section 4 and Section 5 for fast and in-place
implementations, respectively. We conclude in Section 6 by factorizing a degree three
8× 8 Hadamard matrix polynomial into five sparse factors.

The concept, properties and the construction of Hadamard matrix polynomials
have been developed by the author and Radka Tezaur/Turcajova. They are docu-
mented in unpublished reports for Prometheus, Inc. (some related work can be found
in http://www.prometheus-us.com/PONS-papers/) and have been used in signal
processing applications such as [11]. A special case (size 2×2) has been presented in
a Departmental seminar for which an abstract is available [10]. They are introduced
here only for the purpose of demonstrating the applicability of the idea of finding
fast implementations by factorization of matrix polynomials.

2. IMP — invertible matrix polynomials and their factorization

A matrix polynomial of size m and of order p (or degree p− 1), m > 1, p > 0, is
given by

A(z) =
p

∑

k=1

Akz
k−1

where Ak are real m × m matrices. The product of matrix polynomials is again
a matrix polynomial which, unlike scalar polynomials (m = 1), may have degree less
than the sum of the exact degrees of the multiplicands. This leads to the concepts of
invertible matrix polynomials (IMPs) and, as a special case, orthogonal (or unitary)
matrix polynomials.

We state these concepts formally as follows:

Definition 2.1 1. A matrix polynomial A(z) of order p is called invertible if there
exists a polynomial B(z) of order q such that B(0) 6= 0 and

A(z)B(z) = βzsI

(I is the identity matrix) for some scalar β > 0 and some s, 0 ≤ s ≤ p+ q−2.

2. An invertible matrix polynomial A(z) of order p is called orthogonal if

B(z) =
p

∑

k=1

AT
p−k+1z

k−1 = zp−1AT

(

1

z

)

, (1)

β = ‖eT
1A(1)‖

2
2 (e1 is the first column of the identity matrix) and s = p− 1.
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We have introduced the parameter β into the concept of inverse for later conve-
nience and also include the parameter s for larger applicability in some situations.

Our results depend on the factorization of matrix polynomials. An orthogonal
matrix polynomial of degree p can always be factorized into a product of exactly
p linear factors [7, 9], a strong result a weaker form of which has not yet been estab-
lished for IMPs. It has been shown in [6, p. 112], though, that matrix polynomials
can not be generally factorized as demonstrated by the following example:

Example 2.2

A(z) =
(

0 −1
0 0

)

+ z2
(

1 0
0 1

)

is an IMP of size 2 and degree 2 and its inverse is

B(z) =
(

0 1
0 0

)

+ z2
(

1 0
0 1

)

with s = 4 and β = 1.

What has actually been proved in [6] is that this IMP can not be expressed as
a product of two IMPs, both of degree less than two (it is, in fact, factorizable into
a product of three IMPs of degree one). The phrase “can not be factorized” here has
a very restricted meaning — the product of factors of lower degrees and not more
of them than the current degree. The word “factorization” in this paper (and in its
title) is taken to mean simply “expressing as a product of factors”.

Due to their invertibility IMPs can be factorized in many ways; we can actually
prescribe all the partial products in the factorization.

Theorem 2.3 Let Bj(z), j = 0, 1, . . . , n, be invertible matrix polynomials of the
same size. Then there exist IMPs Fj(z), j = 0, 1, . . . , n, such that

Bj(z) = Fj(z)Fj−1(z) . . . F0(z) , j = 0, 1, . . . , n .

Proof. Take F0(z) = B0(z) and Fj(z) = Bj(z)B
−1
j−1(z), j = 1, 2, . . . , n.

The degrees of the factors depend, of course, on the chosen partial products.
Regardless of how trivial this observation is, it is in fact a basis for what follows
because some factorings may have certain desirable properties that others do not,
such as particularly sparseness. We can demonstrate an application of this idea—
using factorization into sparse factors to reduce complexity—in the case of Walsh-
-Hadamard matrices, which are given by the recurrence

W0 = 1 , Wk+1 =
(

Wk Wk

Wk −Wk

)

, k = 0, 1, . . . .

The steps in this construction are the source of partial products; the only difficulty
in applying Theorem 2.3 is the “same size” requirement because Wk+1 is a square
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matrix of size 2k+1, double that of Wk. That is overcome by doubling the size of Wk;
if we choose

B0 =
(

Wk 0
0 Wk

)

and B1 = Wk+1

we get

B1 = FB0 where F =
(

Wk Wk

Wk −Wk

)(

W−1
k 0
0 W−1

k

)

=
(

I I
I −I

)

leading immediately to the fast application ofWn costingN log2N operations, N=2n.
A suitable same permutation of both rows and columns changes this factor F into
a block diagonal matrix with 2× 2 blocks W1 in the diagonal, leading to an in-place
implementation needing only one temporary memory location. Alternatively, this
structure can be exploited for parallel processing.

We conclude this section by a comment on the apparently obvious statement
that if A(z) = F (z)B(z) then the application of A(z) is equivalent to the application
of B(z) followed by that of F (z). While this is straightforward for order p = 1
(multiplication of matrices and vectors), for p > 1 a rigorous definition of the meaning
of “application” involves a lengthy exposition. The difference between applying
matrix polynomials of order p = 1 and orders p > 1 is similar to moving from
discrete Fourier transform to discrete wavelet transforms (originally called lapped
transforms because of the need to use input data from the adjacent blocks). One
approach is to express this application using block Toeplitz matrices (made circulant
for invertibility) as in [8].

However, for the purpose of this paper it is sufficient to state that by application of
an N×N matrix polynomial A(z) of order p to a vector x = (xT

1 x
T
2 . . . x

T
K+p )

T

with N × 1 components xj we mean the evaluation of output

yj =
p

∑

k=1

Akxj+k−1 , j = 1, 2, . . . , K , (2)

from which the statement about application of factorized matrix polynomials is easily
justified.

It is important to note that when yj, for some j, has been evaluated in (2) then
the vector xj will not be needed to evaluate yk for k > j.

3. HMP — Hadamard matrix polynomials and some constructions

Hadamard matrices are, up to a scalar multiple, orthogonal matrices the elements
of which are restricted to have values 1 and −1. We extend this notion to matrix
polynomials as follows:

Definition 3.1 An orthogonal matrix polynomial A(z) =
∑p

j=1Ajz
j−1 with ele-

ments 1 and −1 in all matrices Aj will be called a Hadamard matrix polynomial
(HMP).
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We have introduced the parameter β into the definition of inverse so that we
can say that the inverse of an HMP is again an HMP. For an HMP of size m and
order p, β = mp.

Example 3.2

A(z) =
(

1 1
1 1

)

+ z
(

1 −1
−1 1

)

is an HMP of size 2 and order 2 and its inverse is

B(z) =
(

1 −1
−1 1

)

+ z
(

1 1
1 1

)

with s = 1 and β = 4.

In principle, construction of HMPs can be done by exhaustive search. However,
this approach quickly becomes infeasible as the dimension of the problem grows.

As for Walsh-Hadamard matrices, there are constructions which allow doubling
either the size or the order of an existing HMP. Starting with the simplest HMP
(size 2, order 1)

H0(z) =
(

1 1
1 −1

)

we can thus construct HMPs for which both size and order are powers of 2.

In this paper we will consider only three types of constructions: two which double
the size of an HMP and one which doubles the order. Let us define them formally.

Denote by E the per-identity, that is the matrix such that XE reverses the order
of columns of matrix X while EX does the same for rows. Also, let Ds be a diagonal
matrix with ( 1 −1 1 −1 . . . ) in the diagonal, the matrix post-multiplication
by which will change the sign of every second column.

Definition 3.3 Let A(z) =
∑p

k=1Akz
k−1 be an HMP of even size.

1. We define the Walsh-Sylvester size extension SW (A, z) by

SW (A, z) =
(

A(z) A(z)
A(z) −A(z)

)

.

2. We define the PONS-like size extension SP (A, z) by

SP (A, z) =
(

A(z) DsEA(z)
DsEA(z) A(z)

)

.
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3. Block the matrices Ak into equal parts

Ak =
(

UT
k

V T
k

)

.

We define the order extension Op(A, z) by

Op(A, z) =
p

∑

k=1

(

UT
k

UT
k

)

z2k−2 +
(

V T
k

−V T
k

)

z2k−1 .

Proposition 3.4 The extended matrix polynomials are again HMPs.

Proof. Straightforward using the second characterization of the orthogonal matrix
polynomial in (1).

Note that the HMP in Example 3.2 is obtained by Op(H0, z).
There are other constructions which double either the size or the order of an

HMP and also some which preserve both size and order: these include transposing
the coefficient matrices, changing sign or permuting rows and columns or reversing
the polynomials. It is thus possible to create a large variety of HMPs of increasing size
and order. The type SP is one of similar constructions resulting in so called PONS
Hadamard matrices with many properties which are desirable in signal processing [2].

4. HMP — Fast implementation

The constructions of HMPs introduced in the previous section are the basis for
applying Theorem 2.3, as was already demonstrated for Walsh-Hadamard matrices
in Section 2 (order p = 1). We now show the extension to a degree one HMP (order
p = 2).

Proposition 4.1 Let Wn be a Walsh-Hadamard matrix of size N = 2n. Then

Op(Wn, z) = F (z)Wn where F (z) =
(

I 0
I 0

)

+ z
(

0 I
0 −I

)

,

here the identity matrices (as well as the zero blocks) are of size N/2. The factor’s

first coefficient F1 =
(

I 0
I 0

)

is permutable to a block diagonal matrix with blocks
(

1 0
1 0

)

of size 2.

Proof. Denote, for brevity, W = Wn−1. Calculate

((

I 0
I 0

)

+ z
(

0 I
0 −I

))(

W W
W −W

)

=
(

W W
W W

)

+z
(

W −W
−W W

)

= Op(Wn, z) .

The permutation ( 1 N/2 + 1 2 N/2 + 2 . . . N/2 N ) applied to both rows
and columns of F1 achieves the required diagonalization.
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Further doubling of the order leads to factors of the same structure but of corre-
spondingly higher degrees, with only the first and last coefficient matrices non-zero.
The computational complexity is two per item of the output (i. e., two nonzero
elements in each row of the linear transformation) in each step.

A more complicated factor is obtained when we reverse the order of extensions
(results of this kind are best obtained by computer software and can be checked by
calculations similar to those proving the Proposition 4.1).

Proposition 4.2 If we apply the Walsh extension SW to the linear HMP Op(Wn, z))
(using the notation of Proposition 4.1) the resulting factor is

F (z) =











I I 2I 0
I I 0 2I
I I 0 −2I
I I −2I 0











+ z











I −I 0 0
−I I 0 0
−I I 0 0
I −I 0 0











.

The minimal diagonal blocks after permutations have size 4.

The complexity is now much worse—five operations per item (six, actually, if we
count only additions and implement the multiplier 2 as two additions). Interestingly,
further extensions of size have similarly shaped factors while doubling the order leads
to factors with complexity two per item as in Proposition 4.1.

Similar observations can be pursued for HMPs based on the SP size extensions.
These lead to transforms complementary to Walsh-Hadamard transforms with im-
portant applications in signal processing [1].

5. HMP — in-place implementation

It is obvious that if we apply a linear transform with an upper triangular matrix,
then when we have calculated the first k elements of the result the first k elements
of the input will not be needed any more and can be replaced by the output. That
observation is the basis of the “in-place” implementation. Similarly, in the applica-
tion of a matrix polynomial, in (2), we note that, once yj is evaluated, xj will not
be needed to evaluate yk for k > j.

So memory requirements depend upon how we can implement the evaluation of
A1xj, that is F1xj, as we are now discussing the application of a factor. As already
pointed out in particular cases, we need to be able to permute rows and columns
of F1 into a block upper triangular form; we can then proceed as suggested above
and the maximal size of the diagonal blocks gives the number of additional memory
locations needed to calculate the transform in place.

It is important to realize that the rows and columns must be permuted in the
same way, otherwise we would be storing the results corresponding to the diagonal
blocks in the wrong places and overwriting what is still needed in using the next
block.
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The problem of finding the block triangular form by a symmetric permutation is
equivalent to that of determining the strongly connected components of a graph. It
can be solved, for example, by Tarjan’s algorithm [4].

6. An example

An 8×8 HMP of order 4 (that is, degree 3) constructed by two size extensions SP

followed by two order doubling Op is visualized as:

.......... .......... .......... ..........

.+++---+-. .--+-+++-. .+++---+-. .++-+---+.

.+----+--. .-+--+---. .+----+--. .+-++-+++.

.+-+++---. .+---+-++. .+-+++---. .-+++-+--.

.--+----+. .---+--+-. .--+----+. .+++-++-+.

.+++---+-. .--+-+++-. .---+++-+. .--+-+++-.

.+----+--. .-+--+---. .-++++-++. .-+--+---.

.+-+++---. .+---+-++. .-+---+++. .+---+-++.

.--+----+. .---+--+-. .++-++++-. .---+--+-.

.......... .......... .......... ..........

where + and - denote 1 and −1, respectively, and we have surrounded the four
coefficient matrices A1, . . . , A4 by dots. Note that unlike in the Walsh extensions
the pattern of ±1 looks almost random in this PONS-like HMP. Nevertheless, the
fast/in-place implementation is still achievable by the following five factors

.......... .......... .......... .......... ..........

.++ . .+ + . .+ +. .+ . . + .

.+- . . +- . . + - . . + . . + .

. ++ . . ++ . . + + . . + . . + .

. +- . .- + . . +- . . + . . +.

. ++ . , . + +. , . ++ . , .+ . . - .

. +- . . +- . . - + . . + . . - .

. ++. . ++ . . + + . . + . . - .

. +-. . - +. .- +. . + . . -.

.......... .......... .......... .......... ..........

and
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.......... .......... ..........

.+ . . . . + .

. + . . . . + .

. + . . . . + .

. + . . . . +.

.+ . . . . - .

. + . . . . - .

. + . . . . - .

. + . . . . -.

.......... .......... ..........

Notice that application of each row of the original HMP involving 31 additions and
subtractions is replaced by just 5 such operations. This was achieved by a factoriza-
tion of a degree 3 matrix polynomial into the product of five matrix polynomials of
degrees 0, 0, 0, 1 and 2, respectively.

One other observation important for implementation is the regular pattern in the
structure of the factors which can be realized directly by the computer program and
thus avoiding the need to store the original HMP or its factors.

7. Conclusion

In this paper we show that there is a large class of Hadamard matrices and
Hadamard matrix polynomials which are constructed in such a way that using the
new result of Theorem 2.3 can easily determine whether or not transforms can be
implemented fast and in-place. Our approach suggests a simple algorithm which
determines the polynomial matrix factors from which it is possible to see, in each
case, how good the fast and in-place implementation will be. Theorem 2.3 resolves
an important need because the savings available from fast and in-place transforms
differ significantly from one case to another, as shown by two examples in Section 3.
Indeed, the question what savings can be achieved by fast implementation is thus
far from trivial. The possible savings result from two properties: the sparseness of
the factors and the small integer sizes of their non-zero elements. An alternative
factorization for orthogonal matrix polynomials mentioned in Section 2 ([9]) is not
applicable here because the factors would neither be sparse nor have integer values.
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