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Abstract

An improved version of the Integrative Optical Imaging (IOI) method for diffu-
sion measurements in a geometrically complex environment of the brain extracellular
space has been developed. We present a theory for this Fast Optical Tracking Of Dif-
fusion (FOTOD) which incorporates a time-dependent effective diffusion coefficient
in homogeneous anisotropic media with time-dependent nonspecific linear clearance.
FOTOD can be used to measure rapid changes in extracellular diffusion permeability
that occur, e.g., during brain insults. The achievable time resolution is approximately
one second, a ten fold improvement compared to the traditional IOI method.

1. Introduction

Brain cells (neurons and glia) are surrounded by an extracellular space (ECS)
that facilitates diffusion transport of neuroactive substances, nutrients, metabolites
and therapeutic agents. Our knowledge about the ECS in living brain tissue has
largely been deduced from studying diffusion of extracellular marker molecules [2].
The ECS is a geometrically complex porous environment [4] characterized by two
basic properties: volume fraction α and diffusion permeability θ, see [1]. Volume
fraction is the proportion of brain tissue volume occupied by the ECS and primarily
governs concentration of molecules released into the ECS. Diffusion permeability,
a ratio of the effective diffusion coefficient to its value in an obstacle-free medium,
describes how much a diffusion-mediated process is slowed down in the ECS by
obstacles represented by the cells and their various appendages. One additional
parameter, κ, accounts for small nonspecific clearance proportional to the concen-
tration. It describes nonspecific loss of marker molecules over time, e.g., into blood
stream.

We will address the physiologically important situation where the diffusion per-
meability depends on time, as is observed during brain insults, e.g., following a stroke.
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Our assumption is that the brain ECS environment remains homogeneous, that is,
the time-dependent changes are everywhere the same. However, we do allow the
medium to be anisotropic, as typified by white matter fiber tracts.

The diffusion experiment consists of releasing a small amount of a fluorescent
substance into the ECS from a glass micropipette and repeatedly recording the re-
sulting diffusion cloud with a charge-coupled device (CCD) camera. Because the
camera observes an image formed by a microscope, the optical properties of the
imaging system (its point-spread function) must be taken into account.

2. Theory

We shall investigate concentration c(~r, t) of some extracellular marker as a func-
tion of position in space ~r = (x1, x2, x3) and time t. In a geometrically complex
ECS, all the diffusion parameters are defined as volume-averaged local quantities
over a sufficiently large sampling volume. The concentration is related to the tissue
volume rather than the ECS volume because the optical method does not distinguish
between the tissue compartments. We assume that a homogeneous but anisotropic
environment with time-dependent diffusion characteristics can be described by an
effective diffusion tensor

D⋆
ij(t) = DΘij , (1)

where D is the scalar free diffusion constant and Θij is the diffusion permeability
tensor. Both indices run from 1 to 3. In an environment where the loss of diffus-
ing substance is proportional to the concentration, we also introduce linear time-
dependent clearance κ(t), which is also assumed to be homogeneous. The diffusion
equation in this environment is

∂c(~r, t)

∂t
= D⋆

ij(t)
∂2c(~r, t)

∂xi∂xj

− κ(t)c(~r, t) , (2)

where we used Einstein’s notation for sums (aibi = a · b =
∑

3

i=1
aibi). Equation (2)

expresses the mass preservation when the diffusion flow ~ obeys Fick’s law

ji(~r, t) = −Dik(t)
∂c(~r, t)

∂xk

.

The initial concentration at time t0 is represented by a function c(~r, t0).
Equation (2) with its initial condition can be solved in the Fourier domain.

Fourier transform of c(~r, t) with respect to the three spatial coordinates is defined as

ĉ(~k, t) =

∫∫∫

∞

−∞

c(~r, t) exp(2πikjxj) d~r ,

and the inverse as

c(~r, t) =

∫∫∫

∞

−∞

ĉ(~k, t) exp(−2πikjxj) d~k .
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The Fourier transform turns Eq. (2) into

∂ĉ(~k, t)

∂t
= −

(

4π2kiD
⋆
ij(t)kj + κ(t)

)

ĉ(~k, t) (3)

with the initial condition ĉ(~k, t0).
Solving Eq. (3) with respect to time yields

ĉ(~k, t) = ĉ(~k, t0)ĉδ(~k, t) , (4)

where
ĉδ(~k, t) = Qδ(t) exp

(

−2π2kiΣij(t)kj
)

, (5)

Qδ(t) = exp

(

−

∫ t

t0

κ(t′) dt′
)

, (6)

and

Σij(t) = 2

∫ t

t0

D⋆
ij(t

′) dt′ . (7)

When the initial condition is Dirac’s δ-function δ(~r), its Fourier transform is unity.

The inverse Fourier transform cδ(~r, t) of ĉδ(~k, t) therefore describes the diffusion cloud
initiated by the point source at time t = t0:

cδ(~r, t) = Qδ(t)φδ(~r, t) , (8)

where

φδ(~r, t) =
1

(2π)
3

2 [det(Σij)]
1

2

exp

(

−

xiΣ
−1

ij (t)xj

2

)

. (9)

This is a 3D Gaussian distribution with variance matrix Σij(t) and with the total
amount of diffusing substance decreasing as Qδ(t) from its initial value of Qδ(t0) = 1.

Multiplication in the Fourier domain corresponds to a convolution in the spatial
domain. The concentration distribution following an arbitrary initial condition can
therefore be written as

c(~r, t) =

∫∫∫

∞

−∞

c(~r ′, t0)cδ(~r − ~r ′, t) d~r ′ . (10)

The total amount of diffusing substance is initially Q(t0) =
∫∫∫

∞

−∞
c(~r, t0) d~r and

changes with time as

Q(t) =

∫∫∫

∞

−∞

c(~r, t) d~r = Q(t0)Qδ(t) , (11)

where Qδ(t) is substituted from Eq. (6). If a 3D measurement of concentration in
time is available, the clearance κ(t) can be computed from Eq. (11):

κ(t) = −
d

dt
ln

(

Q(t)

Q(t0)

)

. (12)
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Since the substance loss is homogeneous in space, the effect of nonzero clearance
simply amounts to a global scaling of amplitude.

If the measured 3D concentration is normalized by the total amount Q(t) of the
diffusing substance at every time, a probability density function

φ(~r, t) =
c(~r, t)

Q(t)
(13)

can be constructed and the tensor of its second moments µij(t) computed:

µij(t) =

∫∫∫

∞

−∞

xixjφ(~r, t) d~r

=
1

Q(t0)

∫∫∫

∞

−∞

c(~r ′, t0)

[
∫∫∫

∞

−∞

xixjφδ(~r − ~r ′, t) d~r

]

d~r ′

=
1

Q(t0)

∫∫∫

∞

−∞

c(~r ′, t0)
[

Σij(t) + x′

ix
′

j

]

d~r ′

= Σij(t) + µij(t0) .

(14)

The components of the effective diffusion tensor are now easily extracted as time
derivatives of these moments:

D⋆
ij(t) =

1

2

dµij(t)

dt
. (15)

Unfortunately, a complete 3D measurement of the concentration is not usually
available. More common is an experimental setup with a traditional (non-confocal)
microscope where a 2D image is recorded. Because the microscope’s objective has
a finite aperture, the system appears to be imaging a virtual object, constructed
from the true object by a convolution with the point-spread function (PSF) S(~r) of
the system. The effective width of the PSF limits the system resolution. Using the
approximation for S(~r) suggested by [3], we can derive estimates for the effective
“horizontal” and “vertical” resolutions ∆h and ∆v, respectively:

∆h = 0.61λ

√

n2 −N2

A

nNA

and ∆v = 2λ
n2

−N2

A

nN2

A

, (16)

where λ is the wavelength, n is the index of refraction of the environment under the
objective, and NA is the numerical aperture. The horizontal resolution is typically
smaller than the corresponding size of the recorded image pixel and the horizontal
PSF effect can thus be safely ignored. Resolution ∆v along the microscope optical
axis is usually much lower and cannot be ignored. Under these assumptions, we can
utilize the PSF approximation in the object space

S(~r) = δ(x1)δ(x2)Sv(x3) , (17)
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where

Sv(x3) =
1

∆v

sinc2
(

πx3

∆v

)

(18)

and sinc(x) = sin(x)/x. We shall see that the exact functional form of Sv(x3) is not
important but the validity of the approximation given by Eq. (17) is.

If the PSF was very sharp (S(~r) = δ(~r)), the imaging system would simply record
2D image proportional to the concentrations c(x1, x2, x3 = z0, t) in the plane of focus
x3 = z0. Due to the PSF blurring effect, however, it instead appears to detect signal
originating from concentration

cs(x1, x2, z0, t) =

∫∫∫

∞

−∞

c(~r ′, t)S(~r − ~r ′) d~r ′

=

∫

∞

−∞

c(x1, x2, x
′

3
, t0)Sv(z0 − x′

3
) dx′

3

=

∫∫∫

∞

−∞

cδ(~r
′, t)

∫

∞

−∞

c(x1 − x′

1
, x2 − x′

2
, ξ, t0)Sv(z0 − x′

3
− ξ) dξ d~r ′

=

∫∫∫

∞

−∞

cδ(~r
′, t)cs(x1 − x′

1
, x2 − x′

2
, z0 − x′

3
, t0) d~r

′ .

(19)

It can be seen that the effect of microscope’s PSF in our approximation results in
a simple modification (blurring along the x3 axis) of the initial condition c(~r, t0) to
cs(~r, t0). After this modification, we can consider the microscope to perfectly follow
the rules of geometrical optics, magnifying the image by a constant factor M and
amplifying the image signal by another constant factor A. A single in-focus plane
x3 = z0 through cs is imaged.

Assuming that a 2D section at x3 = z0 of the concentration cloud elicited by the
initial condition cs(~r, t0) represents all the information that is available to us, let us
extract as much as possible from it. The image intensity I(x1, x2, t) expressed in the
object coordinates after constant amplification A is

I(x1, x2, t) = Acs(x1, x2, z0, t) . (20)

For the integrated total image intensity QI(t) we get

QI(t) =

∫∫

∞

−∞

I(x1, x2, t) dx1 dx2

= AQδ(t)

∫∫∫

∞

−∞

cs(~r
′, t0)φδv(z0 − x′

3
,Σ33) d~r

′ ,

(21)

where

φδv(ξ,Σ33) =
1

√

2πΣ33

exp

(

−
ξ2

2Σ33

)

(22)

is the “vertical” portion of the Gaussian distribution φδ. We have made the depen-
dency on Σ33 = Σ33(t) explicit to emphasize it. In contrast to the 3D measurement,
the time dependency is not fully determined by the clearance term Qδ(t).
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Finally, let us calculate the second moment µJK(t) of the image. Capitalized
indices are introduced to distinguish their 2D range (J,K = 1, 2).

µJK(t) =
1

QI(t)

∫∫

∞

−∞

xJxKI(x1, x2, t) dx1 dx2

=
AQδ(t)

QI(t)

∫∫∫

∞

−∞

cs(~r
′, t0)

[
∫∫

∞

−∞

xJxKφδ(~r − ~r ′, t) dx1 dx2

]

d~r ′ .

(23)

In the general anisotropic case with an arbitrarily rotated coordinate system, the
result is rather complicated. However, it is usually possible to make one of the
principle axes parallel to the x3 axis of the imaging system. We then have

Σij(t) =





Σ11(t) Σ12(t) 0
Σ21(t) Σ22(t) 0

0 0 Σ33(t)



 .

This finally leads to

µJK(t) = ΣJK(t) +

∫∫∫

∞

−∞
xJxKcs(~r, t0)φδv(z0 − x3,Σ33(t)) d~r

∫∫∫

∞

−∞
cs(~r, t0)φδv(z0 − x3,Σ33(t)) d~r

. (24)

3. Discussion

In Eq. (24), we have obtained a result useful for a biologist employing the FOTOD
modification of the IOI method. It provides a means of extracting the effective
diffusion coefficient as a function of time.

The experimentally accessible quantity is µJK(t). However, its time derivative
yields the corresponding components of the diffusion tensor DJK only if the last term
of Eq. (24) is constant in time. Its time dependency is determined by the shape of
the initial condition. When the initial condition is separable in the variable x3, the
blurred initial condition will also be separable, and the time dependency of this term
will “cancel out”. Therefore, for a commonly assumed Gaussian initial condition,
which is obviously separable, the extraction of the diffusion tensor is straightforward.
For a more realistic spherical initial condition though, the experimental curve of
variance versus time will not be linear even when the diffusion tensor is constant in
time.
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