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Abstract

Consider contact problem with Coulomb friction on two planar domains. In or-
der to find non-unique solutions we propose a new path following algorithm: Given
a linear loading path we approximate the corresponding solution path. It consists
of oriented piecewise linear branches connected by transition points. We developed
a) predictor-corrector algorithm to follow oriented linear branches, b) branching and
orientation indicators to detect transition points. The techniques incorporate semi-
smooth Newton iterations and inactive/active set strategy on the contact zone.

1. Introduction

Consider deformable bodies in mutual contact. The relevant mathematical de-
scription consists in modeling both the non-penetration conditions and a friction
law. The widely accepted Coulomb friction law represents a serious mathematical
and numerical problem.

In particular, we consider 2D static contact problem with Coulomb friction. The
problem is uniquely solvable, provided that the friction coefficient F > 0 is suffi-
ciently small, see [14, 6]. Since the seminal paper [14], no essential contribution was
made concerning solvability of this problem for general data.

Obviously, engineers have always solved this important problem numerically, re-
gardless unresolved theoretical issues. In a natural finite element (FEM) approx-
imation, the discrete problem has always a solution, disregarding the size of F ,
see [9, 8, 13]. Since the (discrete) problem is locally solvable, the idea was to apply
the Implicit Function Theorem to follow the solution path, which was parameterized
either by F or by a load increment. Nevertheless, lumped element models [11, 9, 13]
indicate, that the particular solution points of interest should be those in which the
Implicit Function Theorem fails to hold. They are turning points of the solution
path. Actually, they are responsible for non-unique solvability of the problem.
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The solution path is continuous, piecewise smooth, [8]. The classical numerical
path following techniques, see e.g. [1], have to fail in principle. In [8], a special
continuation algorithm was proposed to trace piecewise smooth solution curves. The
algorithm was tested on lumped element models with just one or two points on
the contact boundary, [12, 8].

In this paper, we present an improved continuation strategy and test it on a real
FEM model. The outline is as follows: In Section 2, we define the state problem
and its discretization. We recall the semi-smooth Newton method and apply it to
the discrete state problem, see Section 3. The actual contribution is in Section 4,
where a modified path following algorithm is presented. The substantial innovations
consist in

1. application of tangent continuation, see [3], Algorithm 4.25,

2. introducing a robust branching and orientation indicator.

Note that due to material properties, the solution components are very uneven: The
contact forces are within a range 106 Nkg−1 while displacements are tiny.

2. State problem, FEM approximation

Let us consider two bodies Ω1,Ω2 in R
2 with boundaries ∂Ωk = Γ

k

u ∪ Γ
k

p ∪ Γ
k

c ,
k = 1, 2, see Figure 1. First, denote uk the displacement field, σ(uk) the stress
tensor, fk the volume force, pk the surface traction, nk the outer normal vector to
∂Ωk, and λk, µk > 0 material parameters. The state problem is defined by the Lamé
equations in Ωk, k = 1, 2,

−divσ(uk) = fk,

σ(uk) = λktr(ǫ(uk))I + 2µkǫ(uk),

ǫ(uk) = 1
2
(∇uk + (∇uk)⊤),

Ω1

Ω2

Γ1
u

Γ2
u

Γ1
p

Γ2
p

Γ1
c = Γc

Γ2
c = Γc

Figure 1: Geometry of the problem.
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the Dirichlet and Neumann boundary conditions for k = 1, 2,

uk = 0 on Γk
u,

σ(uk)nk = pk on Γk
p ,

and by contact conditions on Γc:

• unilateral contact law, Signorini problem:

uν ≤ 0, σν ≤ 0, σνuν = 0 on Γc ,

where uν = (u1 − u2)⊤n, σν = n⊤σ(u1)n, and n = n1 ,

• transmission of contact stresses:

σ(u1)n = σ(u2)n on Γc ,

• the Coulomb friction law:

|σt| ≤ −Fσν ,
|σt| < −Fσν ⇒ ut = 0 ,
|σt| = −Fσν ⇒ ∃ct ≥ 0 : ut = −ctσt ,

where ut = (u1 − u2)⊤t, σt = t⊤σ(u1)n, t is orthogonal to n, and F > 0 is
the coefficient of friction.

After FEM approximation we get the following primal-dual discrete state prob-
lem:

Ku+N⊤λν + T ⊤λt = f , (1)

Nu ≤ 0, λν ≥ 0, λ⊤

ν Nu = 0, (2)

|λt,i| ≤ Fλn,i,

|λt,i| < Fλn,i ⇒ (Tu)i = 0,

|λt,i| = Fλn,i ⇒ ∃ ct,i ≥ 0 : (Tu)i = ct,iλt,i,











i = 1, . . . , m, (3)

where (u,λν ,λt) ∈ R
n × R

m × R
m. Here u approximates the displacement field,

λν and λt approximate normal and tangential stress components along the contact
boundary Γc, m is the number of contact nodes. Data of the model: K ∈ R

n×n is
positive definite stiffness matrix, N ,T ∈ R

m×n are full rank matrices (the actions of
distributed contact forces along normal and tangential directions), f ∈ R

n are nodal
forces.

Next, we formulate inequalities (2)–(3) as a set of nonlinear equations using
suitable projectors, see e.g. [7]. Let PR+

: R 7→ R+, PR+
(x) = max{0, x}, x ∈ R, be

the projection onto R+. Let us define PR
m

+
: Rm 7→ R

m
+ for x = (x1, . . . , xm)

⊤ by

PR
m

+
(x) = (PR+

(x1), . . . , PR+
(xm))

⊤.
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Let P[−g,g] : R 7→ [−g, g], P[−g,g](x) = max{0, x+g}−max{0, x−g}−g, x ∈ R, be the
projection onto the interval [−g, g], g ≥ 0. Let us define P[−g,g] : R

m 7→ [−g, g], where
[−g, g] = [−g1, g1]×· · ·× [−gm, gm], g = (g1, . . . , gm)

⊤, gi ≥ 0, for x = (x1, . . . , xm)
⊤

by

P[−g,g](x) = (P[−g1,g1](x1), . . . , P[−gm,gm](xm))
⊤.

The inequalities (2) and (3) can be equivalently written as

λν − PR
m

+
(λν + ρNu) = 0 and λt − P[−Fλν ,Fλν ](λt + ρTu) = 0,

respectively, where ρ > 0 is arbitrary but fixed (e.g., ρ = 1). Therefore, solv-
ing (1)–(3) is equivalent to finding roots y = (u,λν ,λt) ∈ R

n × R
m × R

m of the
equation

G(y) ≡







Ku+N⊤λν + T ⊤λt

λν − PR
m

+
(λν + ρNu)

λt − P[−Fλν ,Fλν ](λt + ρTu)






=







f

0

0






, (4)

where y = (u,λν ,λt) ∈ R
n × R

m × R
m.

The mapping G : R
n+2m 7→ R

n+2m is continuous and piecewise smooth. In
particular, it is piecewise affine, see e.g. [16] for the notion.

3. The semi-smooth Newton method

To solve (4), we apply the Newton iterations. Due to the nature of the mapping G,
semi-smooth methods are applicable [2]. Let us also refer to [10], where this technique
was used for solving the Signorini problem.

Let M = {1, 2, . . . , m} be the set of all indices of contact points. Given y =
(u,λν ,λt) ∈ R

n × R
m × R

m, we define the inactive sets Iν = Iν(y), I
+
t = I+t (y),

I−t = I−t (y) by

Iν = {i ∈M : λν,i + ρ(Nu)i < 0},

I+t = {i ∈M : λt,i + ρ(Tu)i − Fλν,i > 0},

I−t = {i ∈M : λt,i + ρ(Tu)i + Fλν,i > 0},

and the active sets Aν = Aν(y), At = At(y) as their complements:

Aν =M\ Iν , At =M\ (I
+
t ∪ I

−

t ).

Let us introduce the indicator matrix DS ∈ R
m×m of S ⊂M as follows:

DS = diag(s1, . . . , sm), si =

{

1, i ∈ S,
0, i ∈M \ S.
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We observe that

G(y) =









Ku+N⊤λν + T⊤λt

λν −DAν
(λν + ρNu)

λt −DAt
(λt + ρTu)−D

I
+
t

Fλν +D
I
−

t

Fλν









= J(y)y ,

where

J(y) ≡









K N⊤ T ⊤

−ρDAν
N DIν 0

−ρDAt
T F(D

I
−

t

−D
I
+
t

) D
I
+
t
∪I

−

t









. (5)

Note that the matrix J(y) can be interpreted as a generalized Jacobi matrix namely,
the differential of a slanting function related to the mapping G at the point y, see [2].
We apply the semi-smooth Newton method for finding roots of (4).

Algorithm SSNM : Denote F ∈ R
n+2m, F ≡ (f , 0, 0) ∈ R

n ×R
m × R

m, the right-
hand side of (4). Set the tolerance ε > 0. Let y(0) ∈ R

n+2m, ρ > 0, k := 1.

(i) Define the inactive/active sets related to y(k−1). Assembly the relevant J(y(k−1)).

(ii) Compute y(k) by solving the linear system

J(y(k−1))y(k) = F . (6)

(iii) If ||y(k) − y(k−1)||/||y(k)|| ≤ ε, return y := y(k).

(iv) Set k := k + 1 and go to step (i).

In the case of convergence, we define

y = SSNM(y(0), f )

as a numerical solution of problem (4). We usually set the tolerance ε = 10−6,
referring to the observation at the end of Section 1.

It is readily seen that if y = SSNM(y(0), f), y = (u,λν ,λt) ∈ R
n × R

m × R
m,

then

(Nu)i = 0, i ∈ Aν , (Tu)i = 0, i ∈ At, (7)

λν,i = 0, i ∈ Iν , λt,i + Fλν,i = 0, i ∈ I−t , λt,i −Fλν,i = 0, i ∈ I+t . (8)

As the active sets are complementary to the inactive sets, they define decoupling of
contact nodes into two groups, i.e. the nodes with the Dirichlet conditions (7) and
the nodes with the Neumann conditions (8).

Take another view: We may try to guess the inactive sets I = {Iν ; I
+
t ; I

−
t }

on the contact. Due to the dichotomy, it would imply the information concerning
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A = {Aν ;At}. Hence, given I = {Iν ; I
+
t ; I

−
t } on the contact, and given a load f ,

find (u,λν ,λt)∈R
n × R

m × R
m such that









K N⊤ T⊤

−ρDAν
N DIν 0

−ρDAt
T F(D

I
−

t

−D
I
+
t

) D
I
+
t
∪I

−

t

















u

λν

λt









=









f

0

0









. (9)

System (9) can be interpreted as the discrete form of the Lamé equations (1) with the
Dirichlet and Neumann boundary conditions (7) and (8), respectively. It motivates
to define the linear operator

y = DirNeu(I, f ) , y = (u,λν ,λt) . (10)

Note that due to the clamping along Γ1
u and Γ2

u, see Figure 1, the system (9) is
uniquely solvable. The matrix J(y) of this system is regular. This justifies, by the
way, that iterations (6) are well defined.

Remark 3.1 Let y(0) = DirNeu(I, f ). Then y(1) = SSNM(y(0), f) and y(1) = y(0)

i.e., Algorithm SSNM converges in the first iteration. In other words, y(0) =
SSNM(y(0), f) is a fixed point of the iterations (6). Conversely, if y(0) ∈ R

n+2m,
y(0) = SSNM(y(0), f), then defining I = {Iν ; I

+
t ; I

−
t } to be the inactive sets of y(0),

we have y(0) = DirNeu(I, f). In that case, the solutions of the Dirichlet-Neumann
problem (9) and the Coulomb friction problem (4) are identical.

Remark 3.2 In principle, we could find all roots y of (4) i.e., all fixed points y of
the iterations (6). Given f , make a trial choice of the inactive sets I = {Iν ; I

+
t ; I

−
t }

on the contact. Apply Remark 3.1: Let y(0) = DirNeu(I, f). The trial choice is
successful, provided that y(0) = SSNM(y(0), f). The trouble is that we would have
to check all 3

∑m

j=0

(

m

j

)

= 3 ·2m variants of the inactive sets I = {Iν ; I
+
t ; I

−
t }, which

is not reasonable.

Remark 3.3 Let y = DirNeu(I, f ). The mapping G, see (4), is not differentiable
at y provided that the active sets Aν and At have a special property: there exists
a contact point i ∈M such that

either λν,i + ρ(Nu)i = 0 (11)

or λt,i + ρ(Tu)i − Fλν,i = 0 (12)

or λt,i + ρ(Tu)i + Fλν,i = 0 . (13)
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4. Continuation

Consider the Coulomb friction model (1)-(3), i.e. (4), assuming that f = f (α)
depends on a scalar parameter α. We impose a continuous loading regime and seek
for continuous response of the model. In particular, we consider a linear loading path

f (α) = (1− α)f1 + αf2, α ∈ R, (14)

where f 1 ∈ R
n and f 2 ∈ R

n are given. The resulting solution path is a curve in
R×Rn+2m, see a qualitative sketch in Figure 2. It consists of oriented linear branches,
connected by transition points.

Each oriented linear branch connecting transition points (αk−1,yk−1) ∈ R×Rn+2m

and (αk,yk) ∈ R× R
n+2m is parameterized by α, and defined as

α 7−→ (α,y(α)) ∈ R× R
n+2m , y(α) = DirNeu(I, f (α)) . (15)

Note that the same branch (15) can have two different orientations. In particular,

• if αk−1 < αk, we consider the positive orientation, i.e., αk−1 < α < αk, as α is
increasing,

• if αk−1 > αk, we consider the negative orientation, i.e., αk−1 > α > αk, as α is
decreasing.

Let us emphasize that the inactive set I does not depend on the position of α in the
above intervals. In Subsection 4.1, we give a predictor/corrector algorithm to follow
such branch numerically. We can define the orientation of a particular branch by
setting

s ≡
αk − αk−1

|αk − αk−1|
.

Hence, orientation s attains the value s = 1 (positive orientation) and s = −1 (neg-
ative orientation). The mentioned predictor/corrector algorithm follows a branch
with the same orientation s.

Oriented linear branch terminates in a transition point (αk,yk) ∈ R × R
n+2m.

It is related to a fixed point yk = SSNM(yk, f(αk)). Due to Remark 3.1, yk =
DirNeu(I, f (αk)), where I = {Iν ; I

+
t ; I

−
t } are the inactive sets of yk. It can be

shown that in a transition point (αk,yk) ∈ R×Rn+2m, the mapping G, see (4), is not
differentiable. We refer to Remark 3.3 for the analysis. Note that our objective is not
to localize transition points exactly. In fact, due to rounding errors it is not possible.
Instead, we develop computationally stable branching and orientation indicators
which are formally related to each of the transition points, see Subsection 4.2.

4.1. Continuation of an oriented linear branch

Data of a linear branch: The orientation s and the fixed inactive set I. The
continuation algorithm is defined as a one-step recurrence

(αi−1,y(αi−1)) ∈ R× R
n+2m → (αi,y(αi)) ∈ R× R

n+2m .
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α

 y
 ∈

 R
n+

2m

(αk−1
, y

k−1)

(αk
, y

k)

(αk+1
, y

k+1)

α
start

α
end

Figure 2: Solution path. For a fixed α, we may encounter up to five crossing points
of the paths. They are related to five different solutions of equation (4) for the same
right-hand side.

Parameters of the algorithm: The step-length h, in a range 0 < hmin ≤ h ≤ hmax.
The adaptive step-length strategy: Define cs and cp, 0 < cs < 1 < cp, the shortening
and the prolongation rates.

Let (αi−1,y(αi−1)) ∈ R× R
n+2m be given. Consider the following

Predictor-Corrector algorithm:

(i) Predictor : αnew = αi−1 + sh , y(0) = DirNeu(I, f (αnew)).

(ii) Corrector :

if y(1) = SSNM(y(0), f (αnew)) & y(1) = y(0)

return αi := αnew , y(αi) := y(1) , i := i+ 1 , h := min(cph, hmax)

elseif h < hmin

return continuation failed, the last computed point of the branch:

(αi−1,y(αi−1)) with orientation s and the inactive set I

else h := max(csh, hmin) , go to step (i) .

The algorithm returns either the new continuation point (αi,y(αi)) ∈ R × R
n+2m

with the same orientation s and the inactive set I, or fails - the case which will be
discussed in Subsection 4.2.

Note that the above algorithm can be characterized as a tangent continuation,
see [3], Algorithm 4.25. The step-size control is inspired by [4].

111



αi−1 αi−1αnew = αi αnew

y(αi−1)

y(αi−1)
y(0) = y(1) ≡ y(αi) y(0) 6= y(1)

Figure 3: Oriented linear branch, predictor-corrector step. The corrector step is
either accepted (on the left) or not accepted (on the right), and step-size h has to
be shortened accordingly.

4.2. The branching and orientation indicators

Let (αi−1,y(αi−1)) ∈ R × R
n+2m be the last point of a linear branch with an

orientation s and inactive set I, see the failure of path following the linear branch
in Subsection 4.1. Define a trial point (αfail,yfail) ∈ R× R

n+2m setting

αfail = αi−1 + shfail , yfail = DirNeu(I, f (αfail)) , (16)

where hfail is the step-length related to the failure of continuation. Note that yfail 6=
SSNM(yfail, f(αfail)). Figure 4, the upper panel, suggests that (αi−1,y(αi−1)) and
(αfail,yfail) are close to a transition point. We may envisage two qualitatively different
cases of the transition.

According to the generic scenario, we should indicate a change of I: Let u, λν

and λt denote the solution components y(αi−1) = (u,λν ,λt) ∈ R
n × R

m × R
m. Let

M = min {|λν + ρNu|, |λt + ρTu− Fλν |, |λt + ρTu+ Fλν |} . (17)

The idea is that the minimizer of the above expression should indicate a transition
point. We expect that just one component of the minimizer is significant. The
transition is related to a transition between inactive and active sets. In this respect,
the minimizer is interpreted as follows:

If M = |λν + ρNu|i, then Aν
i
←→ Iν

else if M = |λt + ρTu− Fλν |i, then At
i
←→ I+t

else if M = |λt + ρTu+ Fλν |i, then At
i
←→ I−t











Inew := I. (18)

The symbol “
i
←→” indicates a particular transition of the index i between the active

and the inactive set. The procedure above results in an update of I denoted as Inew.
We propose the following
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αi−1 αi−1αfail αfail

y(αi−1) y(αi−1)

yfail yfail

αi−1 αi−1 = αtrial 2αfail = αtrial 1 αfail

y(αi−1) y(αi−1)

yfail yfail

ytrial 1

ytrial 2

Figure 4: Let (αi−1,y(αi−1)) ∈ R × R
n+2m be the last point on a linear branch,

continuation failure indicated on (αfail,y(αfail)) ∈ R × R
n+2m. The upper panel,

qualitative scenario envisaged: a) transversal transition on the left, b) fold (turning
point) transition on the right. The lower panel: Branching due to the algorithm.

Branching Algorithm

Let (αi−1,y(αi−1)) ∈ R× R
n+2m be the last point of a linear branch with an orien-

tation s and inactive set I. Update Inew via (18).

Define αtrial 1 = αi−1 + shfail and ytrial 1 = DirNeu(Inew, f (α
trial 1)).

If

ytrial 1 = SSNM(ytrial 1, f(αtrial 1), set (αtrial 1,ytrial 1) ∈ R × R
n+2m to be the

first point on a linear branch with the orientation s := s and the inactive set
I := Inew.

Comment: transversal transition.

else

Define αtrial 2 = αi−1 and ytrial 2 = DirNeu(Inew, f(α
trial 2)).

Set (αtrial 2,ytrial 2) ∈ R× R
n+2m to be the first point of a linear branch with

orientation s := −s and inactive set I := Inew.

Comment: fold, turning point.
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Figure 5: Contact of two elastic bodies Ω1 (the upper body) and Ω2, along the contact
boundary Γc. The loading is due to the surface traction. On the right: Resulting
deformation.

Set i := i+ 1, and apply continuation of the oriented linear branch with orientation
s and the inactive set I.

The idea of the algorithm is indicated in the lower panel of Figure 4. The algo-
rithm works provided that hmin is sufficiently small.

The ambition of the present paper is not to justify the branching scenario theo-
retically. Note only, that the transversal transition may be described using a proper
version of the Implicit Function Theorem, see e.g. [15, 5] and [8] in the context of
Coulomb friction. In case of the fold transition, we cannot quote (to our knowledge)
a relevant analytical result immediately.

5. Numerical experiments

We consider a particular geometry, see Figure 5.
The actual computations are depicted in Figure 6. If F is sufficiently small then

the solution path should contain transversal transition points only, see e.g. [8]. It
pertains to Figure 6, upper left. For larger friction coefficients (e.g. F = 0.6 and
F = 30), the path-following algorithm reveals non-unique solutions of the problem,
see Figure 6, upper right and lower-left including the corresponding zoom. In par-
ticular, we can have up to three (F = 0.6) and five (F = 30) solutions for a fixed
parameter α.
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Figure 6: Discretization: n = 1320, m = 30. The stepsize control: 10−5 ≤ h ≤ 5,
cp = 1.3, cs = 0.5. Plots: Parameter α vs. the solution component λt,1, for selected
friction coefficients F .
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[11] Janovský, V.: Catastrophic features of Coulomb friction model. In: J. R. White-
man (Ed.), The Mathematics of Finite Elements and Applications IV, pp. 259–
264. Academic Press, New York, 1982.
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