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Abstract

The problem of a solving a class of hypersingular integral equations over the bound-
ary of a nonplanar disc is considered. The solution is obtained by an expansion in basis
functions that are orthogonal over the unit disc. A Fourier series in the azimuthal
angle, with the Fourier coefficients expanded in terms of Gegenbauer polynomials is
employed. These integral equations appear in the study of the interaction of water
waves with submerged thin plates.

1. Introduction

The aim of the present study is to consider the semi-analytical solution of a class
of two-dimensional hypersingular integral equations. These equations can arise in
the study of the interaction of water waves with submerged plates and the method
of solution can be classified in the general area of spectral methods.

When the physical problem is two-dimensional and thus, the hypersingular in-
tegral equations is onedimensional, an efficient method can be applied for solution
based on expansions in terms of Chebyshev polynomials. These problems can be
related to scattering by flat [17] and curved [18] submerged plates, and by surface-
piercing plates [18], and the trapping of water waves by submerged plates [19]. They
used an expansion-collocation method to solve the one-dimensional hypersingular in-
tegral equations, in which the unknown is expanded using Chebyshev polynomials of
the second kind. This method is very effective, and its convergence has been proved
by Golberg [5, 6] and by Ervin & Stephan [1], in various function spaces. Ervin &
Stephan [1] obtained the rate of convergence in appropriate Sobolev spaces. See also
Frenkel [4] and Kaya & Erdogan [8].
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The three-dimensional scattering by a thin disc, in deep water was investigated
by Farina and Martin [2] and by Ziebell and Farina [20]. The authors solved the
governing twodimensional hypersingular integral equation numerically using a spec-
tral method using as basis functions, Gegenbauer polynomials in the radial variable.
Physcally, when the plate is very close to the free surface, resonant frequencies can
occur and this phenomenon has been inverstigated by Farina [3].

In this work, we ilustrate the spectral method by choosing the of problem a sub-
merged disc is perturbed out of it original plane, so the disc could be denominated
wrinkled or rough. This type of problem has been solved approximately, for circular
caps and rough discs by Ziebell and Farina [20].

A similar problem in acoustics has been studied by Jansson [7], where the scat-
tering of an acoustic wave from a thin circular disc was investigated by an integral
equation method where the disc is modelled as part of an infinite interface between
two half-spaces; this interface is then perturbed. However, this approach causes the
behaviour of the solution near the edge of the disc to produce singularities at the
edge of the disc.

Before presenting the integral equation that we will focus on, let us present in
the next section, the physical and differential problem that originates it.

2. Formulation

A Cartesian coordinate system is chosen, in which z is directed vertically down-
wards into the fluid. We take the mean free surface lying at z = 0. We assume
the presence of a submerged body into the fluid with a smooth, closed and bounded
surface S. We suppose that the motions of the fluid are of small-amplitude, time-
harmonic, that the fluid is incompressible and inviscid, and that the motion is irrota-
tional. We denote φ as the potential flow and [φ] as the discontinuity in φ across S.
Thus, the time dependent velocity potential is Re{φ(x, z, t)}e−iωt, where ω is the
angular frequency.

The conditions to be satisfied by φ are Laplace’s equation
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

φ = 0 in the fluid

along with the free-surface condition

Kφ+
∂φ

∂z
= 0 on z = 0,

where K = ω2/g; g being the acceleration due to gravity.
On the surface of the body, the normal velocity is prescribed by

∂φ

∂n
= V in S, (1)

where V is a given function and ∂
∂n

denotes normal differentiation.
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Additionally, φ must satisfy a radiation condition:

r1/2
(

∂φ

∂r
− iKφ

)

→ 0 when r = (x2 + y2)1/2 → ∞.

The points P , Q denote points in the fluid and the points p, q denote points on
the submerged body.

The free surface Green function for this problem is given by

G(P,Q) ≡ G(ξ, η, ζ ; x, y, z) = G0(R, z − ζ) +G1(R, z + ζ), (2)

where R = ((x− ξ)2 + (y − η)2)1/2, G0(R, z − ζ) = (R2 + (z − ζ)2)−1/2 and

G1(R, z + ζ) =

∫

∪
∞

0

e−k(z+ζ)J0(kR)
k +K

k −K
dk. (3)

Here J0 is the Bessel function of order zero. The path integral defining G1 above runs
below the singularity K. G satisfies the free surface condition, the Laplace equation,
and have a weak singularity at P = Q.

For any harmonic function φ, satisfying φ = O(r−1) as r → ∞, we have from
Green’s second identity, the following integral representation.

φ(P ) =
1

4π

∫

S

(

φ(q)
∂

∂nq

G(P, q)−G(P, q)
∂φ

∂nq

)

dSq, (4)

where ∂
∂nq

denotes normal differentiation at q on S.

Now, for a thin body with surface Ω, denote the two sides of Ω by Ω+ and Ω−

and define the discontinuity in φ across Ω by

[φ] = lim
Q→q+

φ(Q)− lim
Q→q−

φ(Q),

where q ∈ Ω, q− ∈ Ω−, q+ ∈ Ω+ and Q is a point in the fluid. Thus, equation (4)
reduces to

φ(P ) =
1

4π

∫

Ω

[φ(q)]
∂

∂nq
G(P, q) dS, (5)

where nq = n+
q denotes now the normal unit vector at q on Ω+ . Applying boundary

condition (1) to (5) gives

1

4π

∫

×
Ω

[φ(q)]
∂2

∂nq∂nq
G(p, q) dSq = V (p), p ∈ Ω, (6)

where the integral must be interpreted in the Hadamard finite-part sense. Equa-
tion (6) is the governing hypersingular integral equation for [φ]; this is to be solved
subject to the edge condition

[φ] = 0 in ∂Ω.
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Now let

Ω : z = F (x, y) +
b

2
, (x, y) ∈ D,

where D is the unit disc in the xy-plane and b
2
is the depth to which the body is

submerged. Let p, q ∈ Ω such that p = (ξ, η, ζ), q = (x, y, z). The normal vector
to Ω is then given by

N =

(

−∂F

∂x
,−∂F

∂y
, 1

)

and a unit normal vector is therefore, expressed by n = N/|N|. Using the notation

w(x, y) = [φ(q)], (7)

it can be shown by a direct calculation that formula (5) becomes

φ(ξ, η, ζ) =
1

4π

∫

D

w(x, y)
N ·RF

R3
F

dS +
1

4π

∫

D

w(x, y)(∇G1 ·N) dS, (8)

where RF = (ξ − x, y − η, ζ − F (x, y)), RF = |RF| and dS = dx dy.

Our goal now is to clarify and understand the governing equation (6). In order
to do this, consider the following definitions and notations.

F1 =
∂F

∂x
, F2 =

∂F

∂y
(9)

with F 0
1 and F 0

2 being the corresponding functions at (ξ, η). Let also Λ = F (x,y)−F (ξ,η)
R

and Λ̄ = F (x,y)+F (ξ,η)
R

and define the angle Θ by x − ξ = R cosΘ and y − η =
R sinΘ.

Projecting onto D, we can rewrite (6) as

1

4π

∫

×
D

H w(q)dA+
1

4π

∫

D

W w(q)dA = V (p), p ∈ D, (10)

where (see [12])

H(ξ, η; x, y) =
1

R3

(

1 + F1F1
0 + F2F2

0

(1 + Λ2)
3

2

− 3
(F1 cosΘ + F2 sinΘ− 1)(F1

0 cosΘ + F2
0 sinΘ− 1)

(1 + Λ2)
5

2

)

(11)

and

W =
∂2G1

∂nq∂np

∣

∣

∣

∣

D

=

∫

∪
∞

0

e−kΛ̄Re−kbK k +K

k −K
dk, (12)
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where

K = F1F
0
1

k

2R
(2 sin2ΘJ1(kR) + kR cos2Θ(J0(kR)− J2(kR)))

+F2F
0
2

k

2R
(2 cos2 ΘJ1(kR) + kR sin2Θ(J0(kR)− J2(kR)))

+(F2F
0
1 + F1F

0
2 )

k

2R
cosΘ sinΘ (kR(J0(kR)− J2(kR))− 2J1(kR))

+(F 0
1 − F1)k

2 cosΘJ1(kR)

+(F 0
2 − F2)k

2 sinΘJ1(kR)

+k2J0(kR). (13)

Equation (10) is the governing equation for the problem of any submerged non planar
circular disc Ω in water of infinite depth. Its solution gives the jump in the velocity
potential φ across Ω. With this information, one can evaluate φ at any point P in
the fluid by using (8). Equation (10) could be solved numerically, although not by
the semi-analytical expansion-collocation method proposed by Farina e Martin [2]
for the solution of hypersingular integral equations on a disc. Alternatively, an
approximation to the solution could be obtained by a boundary perturbation method.
We present such a method next. This method follows the one proposed by Martin [12]
for treating the problem of a wrinkled disc in an unbounded fluid.

3. Perturbation method

We now assume that

V (p) = n3, n3 =
1

√

F 2
1 + F 2

2 + 1
, (14)

where n3 is the vertical component of the unit normal vector to the disc. This
simplifies the following analysis and corresponds physically a situation where the
disc performs heave (vertical) oscillations. Thus the problem stated in Section 2
becomes a radiation problem.

In order to consider a perturbation of the flat disc, we introduce the function f
such that

F (x, y) = ǫf(x, y), (15)

where ǫ is a small parameter and f is independent of ǫ. In [12] it is shown that

H =
1

R3
{1 + ǫ2K2 +O(ǫ4)},

where

K2 = f1f
0
1 + f2f

0
2 − 3

2
λ2 − 3(f1 cosΘ + f2 sinΘ− λ)(f 0

1 cosΘ + f 0
2 sin Θ),
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λ = (f(x, y)−f(x i, η))/R and fj , f
0
j are defined similarly to Fj , F

0
j ; see the comments

after (9).
In order to get a similar expression for W , substitute (15) in (12), giving

W = W0 + ǫW1 + ǫ2W2, (16)

where

W0 =

∫

∪
∞

0

e−k(ǫ(f(x,y)+f(ξ,η))+b)k2J0(kR)
k +K

k −K
dk, (17)

W1 = [(f 0
1 − f1) cosΘ + (f 0

2 − f2) sin Θ]

×
∫

∪
∞

0

k +K

k −K
e−k(ǫ(f(x,y)+f(ξ,η))+b)k2J1(kR) dk, (18)

and

W2 =

[

sin2 Θ

R
f1f

0
1 +

cos2Θ

R
f2f

0
2 − (f2f

0
1 + f1f

0
2 )
sin (2Θ)

2R

]

×
∫

∪
∞

0

e−k(ǫ(f(x,y)+f(ξ,η))+b)kJ1(kR)
k +K

k −K
dk

+

[

cos2Θf1f
0
1 + sin2 Θf2f

0
2 − (f2f

0
1 + f1f

0
2 )

sin (2Θ)

2

]

×1

2

∫

∪
∞

0

e−k(ǫ(f(x,y)+f(ξ,η))+b)k2(J0(kR)− J2(kR))
k +K

k −K
dk. (19)

Expanding e−k(ǫ(f(x,y)+f(ξ,η))+b) in Taylor’s series, we obtain

W0 = W00 + ǫW01 + ǫ2W02,

W1 = W10 + ǫW11 + ǫ2W12,

W2 = W20 + ǫW21 + ǫ2W22,

where

W00 =

∫

∪
∞

0

k +K

k −K
e−kbk2J0(kR) dk (20)

and the functions W01, . . . ,W22 are given in appendix A.
Substituting (15) in (14) and expanding in Taylor series, we get

n3 = 1 +
1

2

(

f 2
1 + f 2

2

)

ǫ2 +O(ǫ3). (21)

Similarly, for w, assume

w = w0 + ǫw1 + ǫ2w2 + .... (22)
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Now, substituting (16) and (22) in (10), with V given by (21), we obtain

1

4π

∫

×
D

w0
dA

R3
+

1

4π

∫

D

W00w0 dA = 1, (23)

1

4π

∫

×
D

w1
dA

R3
+

1

4π

∫

D

W00w1 dA = − 1

4π

∫

D

(W10 +W01)w0 dA, (24)

1

4π

∫

×
D

w2
dA

R3
+

1

4π

∫

D

W00w2 dA = − 1

4π

∫

×
D

K2w0
dA

R3

− 1

4π

∫

D

(W02 +W11 +W20)w0 dA

− 1

4π

∫

D

(W01 +W10)w1 dA

+
1

2

(

f 2
1 + f 2

2

)

. (25)

Note that equation (23) appears in [11, eq. 4.1] and in [2, eq. 17]. Thus, the first
order equation of the present perturbation method recovers the governing equation
for the plane disc: this corresponds to the problem of a horizontal and plane circular
disc performing heave oscillations.

By defining the integral operators

Hijw =

∫

D

Wijw dA ∀ i, j ∈ {0, 1, 2},

Hw =

∫

×
D

w
dA

R3
,

K2w =

∫

×
D

K2w
dA

R3
,

we can write equations (23)-(25) in a more compact form as

(H +H00)w0 = 1, (26)

(H +H00)w1 = −(H10 +H01)w0, (27)

(H +H00)w2 = −(K2 +H02 +H11 +H20)w0 − (H01 +H10)w1 +
1

2
(f 2

1+f 2
2 ) (28)

Equations (26)–(28) form a sequence of integral equations that approach the
solution of the governing equation (10). Note that the simple structure of these
equations offers an alternative to the solution of the problem: in order to solve
it, one has just to invert the integral operator H00 + H. Note further that the
function f is only present in the right-hand side of the equations. This means that
all the information about the specific geometry of the plate is in these terms of the
equations. Thus, it is possible to pre-solve the problem for any perturbation of the
disc by inverting the operator mentioned above. This can be done efficiently by the
numerical method presented in Section 4.
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4. Alternative expressions and numerical method

In this section we show how to compute a solution of the problem formulated in
the section above.

4.1. Alternative expressions for W

The integrands of the integral equations (26)–(28) involve the regular part of the
free surface Green function, that is, G1, and its derivatives. The numerical imple-
mentation of these functions are not trivial. Specifically, these integrands present
path integrals that involve Bessel functions. Nevertheless, we can express these in-
tegrals in terms of Bessel functions and Struve functions which are suitable for more
efficient numerical calculation. According to [13] (see also [15, 16]), we have

G1 =

∫

∪
∞

0

k +K

k −K
e−k(z+ζ)J0(kR) dk

= K

[

(X2 + Y 2)−1/2 − πe−Y (H0(X) + Y0(X))− 2

∫ Y

0

et−Y (X2 + t2)−1/2dt

]

−2πiKe−Y J0(X), (29)

where X = KR, Y = K(z + ζ), H0 is the Struve function of order 0 and J0 and Y0

denote the Bessel functions of the first and second kind, respectively. Expression (29)
is suitable for numerical calculation; this has been used is several computer codes for
water wave analysis. See for instance [10].

Using (29), it can be shown that the integrands W00, . . . ,W22, originally written
as (39–45) in appendix A, admit similar representations. For example,

W00 = 2K2(R2 + b2)−1/2 + (2Kb− 1)(R2 + b2)−3/2 + 3b2(R2 + b2)−5/2

−πK3e−Kb(H0(KR) + Y0(KR))− 2K3e−Kb

∫ Kb

0

et((KR)2 + t2)−1/2 dt

+2πiK3e−KbJ0(KR) (30)

is an alternative expression for W00, which allows more efficient numerical computa-
tion than (39) does. The expression (30) does not involve path integrals whose calcu-
lation are computationally expensive. Furthermore, the Struve and Bessel functions
present in this alternative term are efficiently computed by approximating orthogonal
polynomials; see [14]. Integrals such as the one in (30) can be efficiently computed;
see [13] and [15]. Similar alternative expressions for the W01,W02,W10 and W20 are
shown in appendix B.

4.2. Expansion-collocation method

4.2.1. Review of the one-dimensional theory

In two-dimensions, many wave problems involving thin plates can be reduced to
an equation of the form

×
∫ 1

−1

{

1

(x− t)2
+H(x, t)

}

v(t) dt = f(x) for −1 < x < 1, (31)
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supplemented by two boundary conditions, which we take to be v(−1) = v(1) = 0.
Here, v is the unknown function, f is prescribed and the kernel H is known. As-
suming that f is sufficiently smooth, the solution v has square-root zeros at the
end-points. This suggests that we write

v(x) =
√
1− x2 u(x).

Then, we expand u using a set of orthogonal polynomials; a good choice is to use
Chebyshev polynomials of the second kind, Un, defined by

Un(cos θ) =
sin (n+ 1)θ

sin θ
, n = 0, 1, 2, . . . .

This is a good choice because of the formula

1

π
×
∫ 1

−1

√
1− t2 Un(t)

(x− t)2
dt = −(n + 1)Un(x). (32)

Thus, we approximate u by
N
∑

n=0

anUn(x),

substitute into (31) and evaluate the hypersingular integral analytically, using (32).
To find the (N + 1) coefficients an, we collocate at (N + 1) points; good choices are
the zeros of TN+1 or UN+1, where Tn is a Chebyshev polynomial of the first kind.

4.2.2. The two-dimensional theory

The governing equations (26)–(28), obtained by the perturbation method in sec-
tion 3, can be written in the same form, which is

(H +H00)u = g, (33)

where g is a known function, which can involve solutions of lower order problems.
As a particular case, the plane disc equation (26) has an axisymmetric solution and
can be solved by reducing it to a non singular one dimensional Fredholm integral
equation of the second kind [11, eq. 7.6]. A simple numerical method can be used
for this equation; for instance a Nyström method combined with the Gauss-Legendre
quadrature rule, as employed by Martin and Farina [11]. However, as the solutions
of equations (27) and (28) are not axisymmetric, we need a more general method of
solution. We employ the expansion-collocation method used by Farina and Martin [2]
for solving an equation of the form of (33). In fact, this method does not require that
V = 1. This forcing could be any function of two variables; for instance, this could
represent an incident wave and in this way, the problem would be a scattering one.
In order to describe the expansion-collocation method, introduce cylindrical polar
coordinates (r, θ, z), so that x = r cos θ and y = r sin θ. Then, the disc is given by

D = {(r, θ, z) : 0 ≤ r < 1,−π ≤ θ < π, z = b/2} . (34)
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If we write ξ = s cosα, η = s sinα, we have

R3 = [r2 + s2 − 2rs cos (θ − α)]3/2.

Hence we can write (33) as

1

4π
×
∫

D

u(s, α)

{

1

R3
+W00(r, θ; s, α; b,K)

}

s ds dα = g(r, θ), (r, θ) ∈ D, (35)

We shall expand u using the basis functions Bm
k , defined by

Bm
k (r, θ) = Pm

m+2k+1(
√
1− r2) eimθ, k,m = 0, 1, . . . ,

where Pm
n is an associated Legendre function. The radial part of these basis functions

can also be expressed in terms of Gegenbauer polynomials.
The functions {Bm

k } are orthogonal over the unit disc with respect to the weight
(1− r2)−1/2.

The next formula, due to Krenk [9] is essential in the construction of the method:

1

4π
×
∫

S

1

R3
Bm

k (s, α) s ds dα = Cm
k

Bm
k (r, θ)√
1− r2

, (36)

where

Cm
k = −π

4

(2k + 1)!

(2m+ 2k + 1)!
[Pm+1

m+2k+1(0)]
2

Equation (36) allows us to evaluate the hypersingular integrals analytically1. To
exploit (36), we expand [φ] in terms of the functions Bm

k . For brevity, we write

[φ] = w ≈
N
∑

k,m

amk Bm
k :=

N1
∑

k=0

N2
∑

m=0

amk Bm
k . (37)

Substituting (37) in the integral equation (35) and then evaluating the hypersingular
integrals analytically using (36), we obtain

N
∑

k,m

amk

{

Cm
k

Bm
k (r, θ)√
1− r2

+
1

4π

∫

S

Bm
k (s, α)W00(r, θ; s, α; d,K) s ds dα

}

= g(r, θ),

(r, θ) ∈ D. (38)

1Another consequence of formula (36) is that the functions Bm

k
(r, θ)/

√
1− r2 can bee seen as

eigenfunctions of the integral operator H̄ defined by

H̄v(r, θ) =

∫

×
D

1

R3
v(s, α)

√

1− s2 s ds dα.
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It remains to determine the unknown coefficients amk . We use a collocation method,
in which evaluation of (38) at (N1+1)(N2+1) points on the disc gives a linear system
for the coefficients amk . For a discussion on the choice of the collocation points on
a disc and other numerical issues on the collocation-expansion method, including
its analogue for two-dimensional water wave problems, see [2]. Numerical results
showing the effectiviness of the method were presented by Ziebell and Farina [20] for
spherical caps and rough discs.

5. Discussion

We have presented a spectral method for solving a class of hypersingular equa-
tions over a nonplanar circular disc. The motivation of the problem comes from
a interaction of water waves with a submerged thin non-planar surface. By using
a boundary perturbation method, we formulate the problem in terms of sequence of
hypersingular integral equations, (H+H00)wn = gn, over a flat disc. This approach
allows the application of a efficient semi-analytical method where the solution is
expanded in terms of Gegenbauer polynomials. This is the analogue of a spectral
method used for the solutions of one-dimensional hypersingular integral equations in
terms of Chebyshev polynomials.
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Appendices

A. Expansion terms for W

W00 =

∫

∪
∞

0

k +K

k −K
e−kbk2J0(kR) dk, (39)

W01 = −(f(x, y) + f(ξ, η))

∫

∪
∞

0

k +K

k −K
e−kbk3J0(kR) dk, (40)

W02 =
1

2
(f(x, y) + f(ξ, η))2

∫

∪
∞

0

k +K

k −K
e−kbk4J0(kR) dk, (41)

W10 = −[(f1 − f 0
1 ) cosΘ + (f2 − f 0

2 ) sinΘ]

∫

∪
∞

0

k +K

k −K
k2e−kbJ1(kR) dk, (42)

W11=[(f1−f 0
1 ) cosΘ+(f2−f 0

2 ) sinΘ](f(x, y)+f(ξ, η))

∫

∪
∞

0

k +K

k −K
k3e−kbJ1(kR) dk, (43)
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W12=−1

2
[(f1−f 0

1 ) cosΘ+(f2−f 0
2 ) sinΘ](f(x, y)+f(ξ, η))2

∫

∪
∞

0

k+K

k−K
k4e−kbJ1(kR) dk,

(44)

W20 =

[

sin2 Θ

R
f1f

0
1+

cos2Θ

R
f2f

0
2−(f2f

0
1+f1f

0
2 )
sin (2Θ)

2R

]
∫

∪
∞

0

e−kbkJ1(kR)
k +K

k −K
dk

+

[

cos2Θf1f
0
1 sin

2 Θf2f
0
2 − (f2f

0
1 + f1f

0
2 )

sin (2Θ)

2

]

× 1

2

∫

∪
∞

0

e−kbk2(J0(kR)− J2(kR))
k +K

k −K
dk, (45)

W21 =(f(x, y) + f(ξ, η))

{[

−sin2Θ

R
f1f

0
1 − cos2Θ

R
f2f

0
2 + (f2f

0
1 + f1f

0
2 )

sin(2Θ)

2R

]

×
∫

∪
∞

0

e−kbk2J1(kR)
k +K

k −K
dk

+

[

− cos2Θf1f
0
1 − sin2Θf2f

0
2 + (f2f

0
1 + f1f

0
2 )

sin(2Θ)

2

]

× 1

2

∫

∪
∞

0

e−kbk3(J0(kR)− J2(kR))
k +K

k −K
dk

}

, (46)

W22 =
1

2
(f(x, y) + f(ξ, η))2

{[

sin2Θ

R
f1f

0
1 +

cos2 Θ

R
f2f

0
2 − (f2f

0
1 + f1f

0
2 )

sin(2Θ)

2R

]

×
∫

∪
∞

0

e−kbk3J1(kR)
k +K

k −K
dk

+

[

cos2 Θf1f
0
1 sin

2 Θf2f
0
2 − (f2f

0
1 + f1f

0
2 )

sin (2Θ)

2

]

× 1

2

∫

∪
∞

0

e−kbk4(J0(kR)− J2(kR))
k +K

k −K
dk

}

. (47)

B. Alternatives expressions

W01 =(f(x, y) + f(ξ, η))
[

− 2bK3(R2 + b2)−1/2

+ (2K − 2K2b)(R2 + b2)−3/2 + (9b− 6Kb2)(R2 + b2)−5/2

− 15b3(R2 + b2)−7/2 + πK4e−Kb(H0(KR) + Y0(KR))

+ 2 K3e−Kb

∫ Kb

0

et((KR)2 + t2)−1/2 dt+ 2πiK4e−KbJ0(KR)
]

, (48)
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W02 =
1

2
(f(x, y) + f(ξ, η))2

[

− 2K2(R2 + b2)−3/2 + (6K2b2 + 3Kb2 − 18b+ 5)

× (R2 + b2)−5/2 + (−75K2b4 + 30Kb3 − 15b2)(R2 + b2)−7/2

+ 105K2b6(R2 + b2)−9/2 − πK5e−Kb(H0(KR) + Y0(KR))

− 2K3e−Kb

∫ Kb

0

et((KR)2 + t2)−1/2 dt− 2πiK5e−KbJ0(X)
]

, (49)

W10 =[(f1 − f 0
1 ) cosΘ + (f2 − f 0

2 ) sin Θ](f(x, y + f(ξ, η))
[

− 2KR(R2 + b2)−3/2

− 3R(R2 + b2)−5/2 + πK3e−Kb

(

H1(KR) + Y1(KR)− 2

π

)

+ 2K4R e−Kb

∫ Kb

0

e−Kb((KR)2 + t2)−3/2 dt

− 2πiK4e−KbJ1(KR)
]

, (50)

and

W20 =

[− sin2 Θ

R
f1f

0
1 − cos2Θ

R
f2f

0
2 + (f2f

0
1 + f1f

0
2 )
sin (2Θ)

2R

] [

− R(R2 + b2)−3/2

− πK2e−Kb(H ′

0(X) + Y ′

0(X)) + 2K3e−KbR

∫ Kb

0

et((KR)2 + t2)−3/2 dt

+ 2πiK2e−KbJ1(KR)

]

+

[

− cos2Θf1f
0
1 − sin2Θf2f

0
2 + (f2f

0
1 + f1f

0
2 )

sin (2Θ)

2

]

[

3R(R2 + b2)−5/2 − 1

2
πK3e−Kb

(

H2(KR) + Y2(KR)−H0(KR)− Y0(KR)

− KR

2
√
π Γ(5/2)

)

+ 2K3e−Kb

∫ Kb

0

et((KR)2 + t2)−3/2 dt

− 6K3e−Kb

∫ Kb

0

et((KR)2 + t2)−5/2 dt− πiK3e−Kb(J2(KR)− J0(KR))

]

,

(51)

where Γ denotes the Gamma function.
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