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DISCRETE GREEN’S FUNCTION AND MAXIMUM PRINCIPLES∗

Tomáš Vejchodský, Pavel Šoĺın

Abstract

In this paper the discrete Green’s function (DGF) is introduced and its fundamen-
tal properties are proven. Further it is indicated how to use these results to prove
the discrete maximum principle for 1D Poisson equation discretized by the hp-FEM
with pure Dirichlet or with mixed Dirichlet-Neumann boundary conditions and with
piecewise constant coefficient.

1. Introduction

The topic of discrete maximum principles (DMP) is already studied for several
decades [1]. The problematics of DMP can be simplified to the question under what
conditions a numerical method produces nonnegative solution in situations when the
exact solution is known to be nonnegative. Numerical methods that satisfies DMP
are useful and desirable for problems where naturally nonnegative quantities like
temperature, concentration, or density are computed.

Results for the finite element methods (FEM) and for various problems are well
known, see e.g. [2, 4, 5, 6] and references therein. These works, however, deal with
piecewise linear approximations only. The results about higher order approximations
are much scarce, see [3, 11] and recent works of the authors [10, 7, 8, 9]. The reason
is that the condition for a piecewise linear function to be nonnegative is trivial but
suitable condition for piecewise polynomial function is very difficult to obtain.

In this point of view the discrete Green’s function turned out to be a very useful
tool for investigation of DMP for higher order finite element methods.

2. Model problem

Although the theory is applicable for very general class of problems, we restrict
ourselves for the clarity of explanation to relatively simple linear elliptic problem.
The model problem is formulated in the classical way as follows

− div(A∇u) + cu = f in Ω

u = 0 on ΓD (1)

αu + (A∇u) · ν = g on ΓN.
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Here Ω is a domain with Lipschitz continues boundary in Rd. The boundary ∂Ω is
split into two disjoint parts ΓD and ΓN. The matrix A = A(x) ∈ Rd×d is uniformly
positive definite and the coefficients c = c(x) and α = α(x) are nonnegative. The
unit outward normal to ∂Ω is denoted by ν.

To give rigorous meaning to the model problem, we introduce the concept of weak
solution. For that reason we define the space

V = {u ∈ H1(Ω) : u = 0 on ΓD},

where the values on ∂Ω are understood in the sense of traces. The weak solution
u ∈ V of (1) is defined by identity

a(u, v) = F (v) ∀v ∈ V. (2)

The bilinear form a : V × V 7→ R and the linear functional F : V 7→ R are given by

a(u, v) =

∫

Ω

(A∇u) · ∇v dx +

∫

Ω

cuv dx +

∫

ΓN

αuv ds,

F (v) =

∫

Ω

fv dx +

∫

ΓN

gv ds.

These integrals are well defined if A ∈ [
L∞(Ω)

]d×d
, c ∈ L∞(Ω), α ∈ L∞(ΓN),

f ∈ L2(Ω), and g ∈ L2(ΓN). If meas ΓD 6= 0 or c 6≡ 0 or α 6≡ 0 then by Lax-Milgram
lemma the weak solution exists and is unique.

Let us recall the standard definition of Green’s function for problem (2). For
almost every y ∈ Ω, the Green’s function Gy ∈ V is given as a unique solution to

a(w, Gy) = δy(w) ∀w ∈ V. (3)

The symbol δy stands for the Dirac functional. This δy is well defined for all continous
function w by δy(w) = w(y). This definition can be augmented for w from V by the
Hahn-Banach theorem.

By (2) and (3) we infer the fundamental Kirchhoff-Helmholtz representation for-
mula

u(y) = δy(u) = a(u,Gy) = F (Gy).

Hence for our model problem

u(y) =

∫

Ω

f(x)Gy(x) dx +

∫

ΓN

g(s)Gy(s) ds.

3. Discretization by hp-FEM

In the hp version of the finite element method (hp-FEM) we vary both the sizes h
and polynomial degrees p of elements. To discretize our model problem (2) by the
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Fig. 1: A 1D mesh Thp with elements Ki of polynomial degrees pi, i = 1, 2, . . . , M .

hp-FEM we assume the domain Ω to be polytopic. We introduce simplicial parti-
tion Thp of Ω into M elements and we endow each element Ki ∈ Thp, i = 1, 2, . . . , M ,
with an arbitrary polynomial degree pi ≥ 1. See Figure 1 for a 1D illustration.

The hp-FEM mesh Thp defines the finite element space

Vhp = {vhp ∈ V : vhp|Ki
∈ P pi(Ki) for all Ki ∈ Thp},

where P pi(Ki) stands for the space of polynomials on Ki of degree at most pi. The
hp-FEM solution uhp ∈ Vhp is then defined by identity

a(uhp, vhp) = F (vhp) ∀vhp ∈ Vhp. (4)

4. Discrete Green’s function and its properties

The discrete Green’s function (DGF) is defined in analogy with the continuous
case, cf. (3). For all y ∈ Ω, define the discrete Green’s function Ghp,y ∈ Vhp by

a(whp, Ghp,y) = δy(whp) ∀whp ∈ Vhp. (5)

It is convenient to put Ghp(x, y) = Ghp,y(x). The combination of (4) and (5) gives
again the representation formula

uhp(y) = δy(uhp) = a(uhp, Ghp,y) = F (Ghp,y).

For our model problem this becomes

uhp(y) =

∫

Ω

f(x)Ghp(x, y) dx +

∫

ΓN

g(s)Ghp(s, y) ds. (6)

In contrast to the continuous case the DGF can be easily expressed through the
inverse stiffness matrix, cf. [2].

Lemma 4.1. Let {ϕ1, ϕ2, . . . , ϕN} be a basis in Vhp. If A ∈ RN×N be a matrix with
entries Aij = a(ϕj, ϕi), 1 ≤ i, j ≤ N , then

Ghp(x, y) =
N∑

j=1

N∑

k=1

A−1
jk ϕk(x)ϕj(y), (7)

where A−1
jk are entries of A−1, i.e.,

N∑
j=1

AijA
−1
jk = δik (Kronecker symbol).
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Proof. The proof follows from (5) and can be found in [8].

The following two corollaries follow directly from Lemma 4.1.

Corollary 4.1. If a(·, ·) is symmetric then Ghp(x, y) = Ghp(y, x).

Corollary 4.2. Let {l1, l2, . . . , lN} be a basis of Vhp such that a(li, lj) = δij. Then

Ghp(x, y) =
N∑

i=1

li(x)li(y).

Since the nonnegativity of DGF is fundamental for discrete maximum principles,
see Theorem 5.1 below, the following lemma is of particular interest.

Lemma 4.2. If the bilinear form a(·, ·) is symmetric and if a(vhp, vhp) > 0 for all
0 6= vhp ∈ Vhp then Ghp(x, x) > 0 for all x ∈ Ω.

Proof. Let {ϕ1, ϕ2, . . . , ϕN} be a basis in Vhp. By the assumptions the stiffness
matrix Aij = a(ϕj, ϕi), 1 ≤ i, j ≤ N , is symmetric and positive definite as well
as its invers matrix. Thus, by Lemma 4.1, Ghp(x, x) = ϕ(x)T A−1ϕ(x) > 0, where
ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕN(x))T . Notice that ϕ(x) 6= 0 for all x ∈ Ω since {ϕi(x)}
is a basis in Vhp.

5. Application to the discrete maximum principles

These results about DGF can be used to proof certain qualitative properties of the
discrete solution. Let us start with the comparison principle for our model problem.

Definition 5.1. The problem (4) satisfies the discrete comparison principle if

f ≥ 0 and g ≥ 0 ⇒ uhp ≥ 0.

The following theorem is crucial for the analysis of discrete comparison principle
via DGF.

Theorem 5.1. Problem (4) satisfies the discrete comparison principle if and only if
the corresponding discrete Green’s function Ghp(x, y) defined by (5) is nonnegative
in Ω2.

Proof. By (7), the discrete Green’s function Ghp(x, z) is continuous up to the bound-
ary of Ω2. The rest follows immediately from representation formula (6).

For certain problems the DGF can be explicitly expressed and its nonnegativity
can be analyzed. We mention two of our results about discrete maximum principle.
Both are based on Theorem 5.1. A crucial role in these results plays quantity

H∗
rel(p) = 1, for p = 1,

H∗
rel(p) = 1 +

1

2
min

(ξ,η)∈[−1,1]2
l0(ξ)l0(η)

p∑

k=2

κk(ξ)κk(η), for p ≥ 2.
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Here, l0(ξ) = (1 − ξ)/2 and κk(ξ) =

√
2k − 1

2

4

k(1− k)
P ′

k−1(ξ), where Pk(ξ) stand

for the Legendre polynomials of degree k and prime denotes the derivative.

Theorem 5.2. Let us consider simplified problem (4) in 1D setting with homogeneous
Dirichlet boundary conditions, i.e., Ω = (ā, b̄), A = 1, c = 0, α = 0, ΓD = {ā, b̄},
and ΓN = ∅. Let ā = x0 < x1 < . . . < xM = b̄ be a partition of the domain and let
pi ≥ 1 be polynomial degrees assigned to elements Ki = [xi−1, xi], i = 1, 2, . . . ,M . If

xi − xi−1

b̄− ā
≤ H∗

rel(pi) for all i = 1, 2, . . . , M, (8)

then this problem satisfies the discrete comparison principle.

Theorem 5.3. Let us consider simplified problem (4) in 1D setting with mixed bound-
ary conditions, i.e., Ω = (ā, b̄), A = 1, c = 0, α = 0, ΓD = {ā} and ΓN = {b̄}. Let
ā = x0 < x1 < . . . < xM = b̄ be a partition of the domain and let pi ≥ 1 be polynomial
degrees assigned to elements Ki = [xi−1, xi], i = 1, 2, . . . ,M . If

H∗
rel(pi) ≥ 0 for all i = 1, 2, . . . , M, (9)

then this problem satisfies the discrete comparison principle.

Proofs of Theorems 5.2 and 5.3 are given in [8] and [9], respectively. In the same
papers we verified that Hrel(p) ≥ 9/10 for 1 ≤ p ≤ 100. Thus, condition (9) is
satisfied for these values of p and the condition (8) can be strengthened to
(xi − xi−1)/(b̄ − ā) ≤ 9/10 which means that the discrete comparison principle is
valid if all elements are shorter then 90 % of the length of the domain Ω.

Both the results from Theorems 5.2 and 5.3 can be generalized to the case of piece-
wise constant coefficient A. The case of mixed boundary conditions (Theorem 5.3)
remains valid even for piecewise constant A, i.e., the comparison principle is guar-
anteed for all meshes with polynomial degrees not exceeding 100. The case of pure
Dirichlet boundary conditions (Theorem 5.2) needs reformulation of condition (8) in
the following way

h̃i

M∑
k=1

h̃k

≤ H∗
rel(pi) for all i = 1, 2, . . . , M. (10)

Here h̃i = (xi − xi−1)/Ai, i = 1, 2, . . . , M , mean modified element lengths and
Ai is the constant value of A(x) on the element Ki. Notice that the sum in the
denominator in (10) can be interpretted as a length of a modified domain. More
details about the case with piecewise constant coefficient can be found in [10].

Finally, let us recall that for problems treated in Theorems 5.2 and 5.3 the discrete
comparison principle implies the discrete maximum principle. The discrete maximum
principle states that in the case of nonpositive f and nonpositive g the maximum
of uhp is attained in the interior of Ω.
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