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NUMERICAL APPROACHES TO PARAMETER ESTIMATES
IN STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN

BY FRACTIONAL BROWNIAN MOTION∗

Jan Posṕı̌sil

Abstract

We solve the one-dimensional stochastic heat equation driven by fractional Brown-
ian motion using the modified Euler-Maruyama finite differences method. We use the
numerical solution as our observation and we show how to estimate the drift parameter
from a one path only.

1. Introduction

In this paper we follow [5] where parameter estimates in stochastic evolution
equations driven by fractional Brownian motion were studied. The existence and
ergodicity of the strictly stationary solution, which is proved there, is crucial for
the parameter (especially the drift) estimates. From an observation of the solution
on some time interval [0, T ], consistent drift estimates are given for T → ∞. Such
a constraint is not necessary for the diffusion estimates that can be calculated for
T < ∞ using the variation of the solution. A presentation of the diffusion estimates
is beyond the scope of this paper and only the drift estimates will be considered.
In [5], the results are presented in infinite dimension, however, they apply to finite
dimensional case as well.

In this paper we give a brief summary of numerical experiments done to support
the obtained results in parameter estimates. To simulate the one-dimensional frac-
tional Brownian motion we use the spectral method proposed by Z. Yin in [6]. The
problem of numerical simulations of solutions to SDEs and SPDEs has only recently
been addressed. Kloeden and Platen wrote a comprehensive book [2] dedicated to nu-
merical solutions to SDEs. Some of the methods were compared by Higham in [1] and
by the author in [4]. We solve the one-dimensional SPDE using the Euler-Maruyama
finite differences method that has been modified for the purposes of this paper so
that the driving process is considered to be a fractional Brownian motion. We will
use the numerical solution as our observation and we will show how to estimate the
parameters either from a one path or many paths observation.

∗This work was partially supported by the GACR Grant 201/04/0750 and by the MSMT Re-
search Plan MSM 4977751301.
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2. Parameter estimates in linear SPDEs

In this section we consider the following initial boundary value problem for linear
stochastic heat equation

dX(t, x) = α∆X(t, x) dt + σ dBH(t), t ≥ 0, x ∈ [0, L], L > 0 ,

X(0, x) = x0(x), x ∈ [0, L],

X(t, 0) = X(t, L) = 0, t ≥ 0,

(1)

where α > 0 and σ > 0 are real constant parameters, ∆ = ∂2/∂x2 is the Laplace op-
erator, x0 ∈ L2([0, L]) and BH(t), t ≥ 0, is a standard cylindrical fractional Brownian
motion with Hurst parameter H ∈ (1/2, 1).

Denote by ek(x) =
√

2/L sin(kπx/L) the orthonormal1 basis for the Laplacian
on [0, L] and by λk = αk2π2/L2 for k = 1, 2, . . . . Let S(t) be a strongly continuous
semigroup generated by the Laplacian. Using this notation, it can be shown that
[S(t)ek](x) = ek(x)e−λkt. In our estimates below, we can use one function from the
basis as our test function z(x). Obviously

〈X(t, x), z(x)〉V =

∫ L

0

X(t, x)z(x) dx

|X(t, x)|2V = 〈X(t, x), X(t, x)〉V =

∫ L

0

X2(t, x) dx.

We will also need to calculate the covariance operator

〈QT ek(x), ek(x)〉V
= σ2

∫ T

0

∫ T

0

(∫ L

0

([S(u)ek](x)) ([S(v)ek](x)) dx

)
φ(u− v) du dv

= σ2

∫ T

0

∫ T

0

e−λk(u+v)φ(u− v) du dv,

where φ(u) = H(2H − 1)|u|2H−2 is again the kernel.
Let us now introduce an approach to numerically solve (1). We have to point

out that the rest of this section is for illustration purposes only, because there is no
result in numerical solution to SPDEs driven by fractional Brownian motion so far.
The proposed method below is only a natural modification of a similar method for
solving SPDEs driven by the Wiener process, but the method is presented without
the knowledge of its convergence.

Define, for i = 0, 1, . . . , M , a space grid by xi = ik, where k = L/M . Using the
finite difference for Laplacian we obtain the following system of SDEs

dX(t, xi) =
α

k2
(X(t, xi+1)− 2X(t, xi) + X(t, xi−1)) dt + σ dβH

i (t),

1it means that
∫ L

0
e2
k(x) dx = 1
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where βH
i (t) are stochastically independent standard fractional Brownian motions

and i = 1, . . . , M . We rewrite the system into the matrix form

dX(t) = AX(t) dt + σ dBH(t),

where X(t) is now an M × 1 matrix (vector) with elements X(t, xi), A is an M ×M
matrix and BH(t) an M × 1 vector of the form

A =
α

k2




−2 1 0 · · · 0

1 −2 1
...

0
. . . . . . . . . 0

... 1 −2 1
0 · · · 0 1 −2




, BH(t) =




βH
1 (t)

βH
2 (t)
...

βH
M(t)


 .

Now we can use again the Euler-Maruyama method to generate a sequence (of
vectors) (Yj) approximating the solution X(tj) by the following explicit scheme:

Y0 = x0

Yj+1 = Yj + AYjh + σWH
j , j = 1, . . . , N,

(2)

where WH
j = BH(tj+1)− BH(tj) are the increments of fractional Brownian motion.

Like in the previous section, it must be pointed out that it was not the purpose of
this paper to study convergence of this numerical scheme.

In the following figure on the left we can see one sample path of the solution
X(t, x) to (1) with initial condition x0(x) = x(L−x), x ∈ [0, L] for particular values
of H,α, σ, L and T . Picture on the right shows the mean of P = 10 paths of the
solution.

In the next figure we can see the cuts of the solution in the points x = L/2 and
t = T/2 respectively. Several individual paths are drawn together with their mean
and variance. Note that some of the path and even the mean could be also negative.
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In figure on the right we can see
the mean of P = 10 paths of the
solution to (1) over a larger time
interval (T = 100). We can see
that the influence of the initial
condition vanishes rather quickly
and the solution converges to the
strictly stationary solution.

Remark 2.1. To ensure the convergence in the explicit scheme, it is necessary to
control some relation between the time and space steps. For a deterministic PDE,
i.e. when σ = 0, it is known [3] that the relation is the following

α
h

k2
≤ 1/2. (3)

To overcome this difficulty, we can modify (2) to get the implicit scheme:

Y0 = x0

Yj+1 = Yj + AYj+1h + σWH
j , j = 1, . . . , N

(4)

and calculate Yj+1 by solving the following systems of equations

(I − Ah)Yj+1 = Yj + σWH
j , j = 1, . . . , N,

where I denotes the identity matrix. Instead of calculating each of the unknown
vector Yj by a separate trivial formula, we must now solve this system of equations
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to give the values simultaneously. This task is however not very difficult, because
the matrix (I − Ah) has a special form, it is a three-diagonal symmetric positive
definite matrix. From the theory of PDEs, it is known that the implicit scheme has
one big advantage, namely there is no such constraint as (3). In [5] it was believed
that something similar holds also for this implicit scheme for SPDEs with additive
noise. However, additional numerical experiments showed rather unstable behaviour
also for the implicit scheme. Therefore, a relation similar to (3) (depending probably
also on H) will have to be taken into account.

In both schemes (2) and (4) there has been a slight modification to take into
account the boundary conditions.

Let us now suppose that we have one path observation Xx0(t, x), t ∈ [0, T ], T À 1,
of the solution to (1). For the test purposes we use again the already calculated
numerical solution as our observation. From this path we want to estimate the value
of the parameter α. We may either consider that we know the parameter σ or we
can use its estimate from the previous section. To estimate the parameter α we will
again use [5], Theorem 3.2.1.

Let z(x) = e1(x) =
√

2/L sin(πx/L), x ∈ [0, L].
First of all we consider a reference equation (1) with the parameter α = 1. For

this equation we calculate numerically

〈QT z, z〉 = 〈QT e1, e1〉V = σ2

∫ T

0

∫ T

0

e−λ1(u+v)φ(u− v) du dv.

We now turn back to the equation (1) with unknown parameter α (i.e. not
necessarily equal to one). From observed path of the solution we have to calculate
the average

1

T

∫ T

0

|〈Xx0(t, x), z(x)〉V |2 dt =
1

T

∫ T

0

∣∣∣∣
∫ L

0

Xx0(t, x)z(x) dx

∣∣∣∣
2

dt

for sufficiently large T . Using Theorem 3.2.1 from [5], we are now able to calculate
the estimate

α̂T :=

(
〈Q∞z, z〉V

1
T

∫ T

0
|〈Xx0(t, x), z〉V |2 dt

) 1
2H

=


 〈Q∞e1, e1〉V

1
T

∫ T

0

∣∣∣
∫ L

0
Xx0(t, x)e1(x) dx

∣∣∣
2

dt




1
2H

.

In the following figure on the left, we can see how 〈QT e1, e1〉V converges to
〈Q∞e1, e1〉V for particular values of α, σ, H and L. In picture on the right, we
can see how α̂T converges to the true value of parameter α for large values of T and
for particular value of H (σ and L appears in the solution). We can see that a large
time has to be considered to obtain a reasonable estimate and due to the fluctuations
also some average.
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3. Concluding remarks

It has to be pointed out that there are still no appropriate convergence results
for the numerical methods used, therefore we used the modified Euler-Maruyama
method only for demonstration purposes. Moreover, for some combinations of pa-
rameter constants, especially α and σ, the results of these numerical experiments
are not so convincing. Hence, further research in the area of numerical solution to
stochastic evolution equations driven by fractional Brownian motion is needed.
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