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INTERIOR-POINT METHOD FOR LARGE-SCALE l1
OPTIMIZATION∗

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

Consider the l1 optimization problem: Minimize function

F (x) =
m∑

i=1

|fi(x)|, (1)

where fi : Rn → R, 0 ≤ i ≤ m (m is usually large), are smooth functions depending
on a small number of variables. We will assume that these functions are twice contin-
uously differentiable with bounded first and second-order derivatives in a sufficiently
large region D.

Minimization of F is equivalent to the sparse nonlinear programming problem
with n + m variables x ∈ Rn, z ∈ Rm:

minimize
m∑

i=1

zi subject to − zi ≤ fi(x) ≤ zi, 1 ≤ i ≤ m. (2)

In this contribution, we introduce a trust-region interior-point method for nonconvex
nonlinear programming that utilizes a special structure of problem (2). All theoret-
ical results are given without proofs. These proofs can be found in [5].

The constrained problem (2) is replaced by a sequence of unconstrained problems

minimize B(x, z; µ) =
m∑

i=1

zi − µ
m∑

i=1

log(zi − fi(x))− µ
m∑

i=1

log(zi + fi(x))

=
m∑

i=1

zi − µ
m∑

i=1

log(z2
i − f 2

i (x)), (3)

where zi > |fi(x)|, 1 ≤ i ≤ m, and µ > 0 (we assume that µ → 0 monotonically).
Barrier function (3) remains unchanged if we replace problem (2) by equivalent
problem

minimize
m∑

i=1

zi subject to f 2
i (x) ≤ z2

i , 1 ≤ i ≤ m. (4)

The necessary first-order (KKT) conditions for the solution of (4) have the form

m∑

i=1

2wifi(x)∇fi(x) = 0, 2wizi = 1, wi ≥ 0, wi(z
2
i − f 2

i (x)) = 0, 1 ≤ i ≤ m,

(5)
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where wi, 1 ≤ i ≤ m, are Lagrange multipliers. Since zi = |fi(x)|, 1 ≤ i ≤ m, at the
solution of (4), we can write (5) in a simpler equivalent form

m∑

i=1

ui∇fi(x) = 0,
uizi

fi(x)
= 1, z2

i − f 2
i (x) = 0, 1 ≤ i ≤ m, (6)

where ui = 2wifi(x) for 1 ≤ i ≤ m.
The special structure of problem (3) allows us to obtain minimizer z(x; µ) ∈ Rm

of function B(x, z; µ) for a given x ∈ Rn.

Lemma 1. Function B(x, z; µ) (with x fixed) has the unique stationary point, which
is its global minimizer. This stationary point is characterized by equations

2µzi(x; µ)

z2
i (x; µ)− f 2

i (x)
= 1 or z2

i (x; µ)− f 2
i (x) = 2µzi(x; µ), 1 ≤ i ≤ m, (7)

which have solutions

zi(x; µ) = µ +
√

µ2 + f 2
i (x), 1 ≤ i ≤ m. (8)

Assuming z = z(x; µ), we denote

B(x; µ) =
m∑

i=1

zi(x; µ)− µ
m∑

i=1

log(z2
i (x; µ)− f 2

i (x)) (9)

and u(x; µ) = u(x, z(x; µ); µ). In this case, barrier function B(x; µ) depends only
on x.

Lemma 2. Consider barrier function (9). Then

∇B(x; µ) = g(x; µ), (10)

where g(x; µ) = A(x)u(x; µ) =
∑m

i=1∇fi(x)ui(x; µ) with

ui(x; µ) =
2µfi(x)

z2
i − f 2

i (x)
, 1 ≤ i ≤ m, (11)

and
∇2B(x; µ) = G(x; µ) + A(x)V (x; µ)AT (x), (12)

where

G(x; µ) =
m∑

i=1

ui(x; µ)Gi(x) (13)

with Gi(x) = ∇2fi(x), 1 ≤ i ≤ m, and V (x; µ) = diag(v1(x; µ), . . . , vm(x; µ)) with

vi(x; µ) =
2µ

z2
i (x; µ) + f 2

i (x)
, 1 ≤ i ≤ m. (14)
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Lemma 3. Let ∇2B(x; µ)d = −∇B(x; µ). If matrix G(x; µ) is positive definite, then
dT g(x; µ) < 0 (direction vector d is descent for B(x; µ)).

Since positive definiteness of matrix G(x; µ) is not assured, the standard line-
search methods cannot be used. For this reason, trust-region methods were devel-
oped. These methods use the direction vector obtained as an approximate minimizer
of the quadratic subproblem

minimize Q(d) =
1

2
dT∇2B(x; µ)d + gT (x; µ)d subject to ‖d‖ ≤ ∆, (15)

where ∆ is the trust region radius. Direction vector d serves for obtaining new point
x+ ∈ Rn. Denoting

ρ(d) =
B(x + d; µ)−B(x; µ)

Q(d)
, (16)

we set
x+ = x if ρ(d) ≤ 0, or x+ = x + d if ρ(d) > 0. (17)

Finally, we update the trust region radius in such a way that

∆+ = β∆ if ρ(d) < ρ,

∆+ = ∆ if ρ ≤ ρ(d) ≤ ρ, (18)

∆+ = β∆ if ρ < ρ(d),

where 0 < ρ < ρ < 1 and 0 < β < 1 < β.
Now we are in a position to describe the basic algorithm.

Algorithm 1.

Data: Termination parameter ε > 0, minimum value of the barrier parameter
µ > 0, rate of the barrier parameter decrease 0 < τ < 1, trust-region

parameters 0 < ρ < ρ < 1, trust-region coefficients 0 < β < 1 < β, step

bound ∆ > 0.

Input: Sparsity pattern of matrix A. Initial estimation of vector x.

Step 1: Initiation. Choose initial barrier parameter µ > 0 and initial trust-region
radius 0 < ∆ ≤ ∆. Determine the sparsity pattern of matrix ∇2B from
the sparsity pattern of matrix A. Carry out symbolic decomposition of
∇2B. Compute values fi(x), 1 ≤ i ≤ m, and F (x) =

∑
1≤i≤m |fi(x)|. Set

k := 0 (iteration count).

Step 2: Termination. Determine vector z(x; µ) by (8) and vector u(x; µ) by (11).
Compute matrix A(x) and vector g(x; µ) = A(x)u(x; µ). If µ ≤ µ and
‖g(x; µ)‖ ≤ ε, then terminate the computation. Otherwise set k := k+1.

Step 3: Approximation of the Hessian matrix. Compute approximation of matrix
G(x; µ) by using differences A(x + δv)u(x; µ)− g(x; µ) for a suitable set
of vectors v (see [1]). Determine Hessian matrix ∇2B(x; µ) by (12).
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Step 4: Direction determination. Determine vector d as an approximate solution
of trust-region subproblem (15).

Step 5: Step-length selection. Determine x+ by (17) and set x := x+. Compute
values fi(x), 1 ≤ i ≤ m, and F (x) =

∑
1≤i≤m |fi(x)|.

Step 6: Trust-region update. Determine new trust-region radius ∆ by (18) and
set ∆ := min(∆, ∆).

Step 7: Barrier parameter update. If ρ(d) ≥ ρ (where ρ(d) is given by (16)),
determine a new value of barrier parameter µ ≥ µ (not greater than the
current one) by the procedure described below. Go to Step 2.

The use of the maximum step-length ∆ has no theoretical significance but is very
useful for practical computations. First, the problem functions can sometimes be
evaluated only in a relatively small region (if they contain exponentials) so that the
maximum step-length is necessary. Secondly, the problem can be very ill-conditioned
far from the solution point, thus large steps are unsuitable. Finally, if the problem
has more local solutions, a suitably chosen maximum step-length can cause a local
solution with a lower value of F to be reached. Therefore, maximum step-length ∆
is a parameter, which is most frequently tuned.

Direction vector d ∈ Rn should be a solution of the quadratic subproblem (15).
Usually, an inexact approximate solution suffices. The dog-leg method described
in [6], [2], seeks d as a linear combination of the Cauchy step dC = −(gT g/gT∇2Bg)g
and the Newton step dN = −(∇2B)−1g. The Newton step is computed by using ei-
ther sparse Gill-Murray decomposition [4] or sparse Bunch-Parlett decomposition [3].
The sparse Gill-Murray decomposition has the form ∇2B + E = LDLT = RT R,
where E is a positive semidefinite diagonal matrix (which is equal to zero when
∇2B is positive definite), L is a lower triangular matrix, D is a positive definite
diagonal matrix and R is an upper triangular matrix. The sparse Bunch-Parlett de-
composition has the form ∇2B = PLMLT P T , where P is a permutation matrix, L is
a lower triangular matrix and M is a block-diagonal matrix with 1×1 or 2×2 blocks
(which is indefinite when ∇2B is indefinite). The following algorithm is a typical
implementation of the dog-leg method.

Algorithm A: Data ∆ > 0.

Step 1: If gT∇2Bg ≤ 0, set s := −(∆/‖g‖)g and terminate the computation.

Step 2: Compute the Cauchy step dC = −(gT g/gT∇2Bg)g. If ‖dC‖ ≥ ∆, set
d := (∆/‖dC‖)dC and terminate the computation.

Step 3: Compute the Newton step dN = −(∇2B)−1g. If (dN − dC)T dC ≥ 0 and
‖dN‖ ≤ ∆, set d := dN and terminate the computation.

Step 4: If (dN − dC)T dC ≥ 0 and ‖dN‖ > ∆, determine number θ in such a way
that dT

CdC/dT
CdN ≤ θ ≤ 1, choose α > 0 such that ‖dC +α(θdN − dC)‖ =

∆, set d := dC + α(θdN − dC) and terminate the computation.
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Step 5: If (dN − dC)T dC < 0, choose α > 0 such that ‖dC + α(dC − dN)‖ = ∆,
set d := dC + α(dC − dN) and terminate the computation.

The above algorithm generates direction vectors such that

‖d‖ ≤ ∆,

‖d‖ < ∆ ⇒ ∇2Bd = −g,

−Q(d) ≥ σ‖g‖min

(
∆,

‖g‖
‖∇2B‖

)
,

where 0 < σ < 1 is a constant. These inequalities imply (see [7]), that a constant
0 < c < 1 exists such that

‖d‖ ≥ cγ/B, (19)

where γ is the minimum norm of gradients that have been computed and B is an
upper bound for ‖∇2B‖ (assuming µ ≥ µ > 0, we can set B = m(G + g2/(2µ))).
Thus

B(x + d; µ)−B(x; µ) ≤ ρQ(d) ≤ −ρ σ c
γ2

B
if ρ ≥ ρ (20)

by (17) and (19).
Algorithm 1 is sensitive on the way in which the barrier parameter decreases.

We have tested various possibilities for the barrier parameter update including sim-
ple geometric sequences, which were proved to be unsuitable. Better results were
obtained by setting

µk+1 = µk if ‖gk‖2 > τµk or µk+1 = max(µ, ‖gk‖2) if ‖gk‖2 ≤ τµk, (21)

where 0 < τ < 1.
In the subsequent considerations, we will assume that ε = µ = 0 and all compu-

tations are exact.

Lemma 4. Let Assumption 3 be satisfied. Then values {µk}∞1 , generated by Algo-
rithm 1, form a non-increasing sequence such that µk → 0.

Lemma 5. The inequality

B(xk+1; µk+1) ≤ B(xk+1; µk)− L(µk+1 − µk) (22)

holds with some L ∈ R.

Theorem 1. Consider sequence {xk}∞1 , generated by Algorithm 1. Then

lim inf
k→∞

m∑

i=1

ui(xk; µk)gi(xk) = 0

and

ui(xk; µk) =
fi(xk)

zi(xk; µk)
, lim

k→∞
(z2

i (xk; µk)− f 2
i (xk)) = 0

for 1 ≤ i ≤ m.
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Remark 1. If we replace (17) by

x+ = x if ρ(d) < ρ, or x+ = x + d if ρ(d) ≥ ρ (23)

in Algorithm 1, then limk→∞ ‖g(xk; µk)‖ = 0.

Corollary 1. Let assumptions of Theorem 1 and (23) hold. Then every cluster point
x ∈ Rn of sequence {xk}∞1 satisfies KKT conditions (6), where u ∈ Rm is a cluster
point of sequence {u(xk; µk)}∞1 .

The efficiency of Algorithm 1 was tested by using extensive collections of test
problems. The results are given in [5].
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