
PANM 13

Ladislav Lukšan; Ctirad Matonoha; Jan Vlček
Interior-point method for large-scale l1 optimization

In: Jan Chleboun and Karel Segeth and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical
Mathematics, Proceedings of Seminar. Prague, May 28-31, 2006. Institute of Mathematics AS CR, Prague, 2006.
pp. 190–195.

Persistent URL: http://dml.cz/dmlcz/702836

Terms of use:
© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702836
http://dml.cz

INTERIOR-POINT METHOD FOR LARGE-SCALE l1
OPTIMIZATION∗

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

Consider the l1 optimization problem: Minimize function

F (x) =
m∑

i=1

|fi(x)|, (1)

where fi : Rn → R, 0 ≤ i ≤ m (m is usually large), are smooth functions depending
on a small number of variables. We will assume that these functions are twice contin-
uously differentiable with bounded first and second-order derivatives in a sufficiently
large region D.

Minimization of F is equivalent to the sparse nonlinear programming problem
with n + m variables x ∈ Rn, z ∈ Rm:

minimize
m∑

i=1

zi subject to − zi ≤ fi(x) ≤ zi, 1 ≤ i ≤ m. (2)

In this contribution, we introduce a trust-region interior-point method for nonconvex
nonlinear programming that utilizes a special structure of problem (2). All theoret-
ical results are given without proofs. These proofs can be found in [5].

The constrained problem (2) is replaced by a sequence of unconstrained problems

minimize B(x, z; µ) =
m∑

i=1

zi − µ
m∑

i=1

log(zi − fi(x))− µ
m∑

i=1

log(zi + fi(x))

=
m∑

i=1

zi − µ
m∑

i=1

log(z2
i − f 2

i (x)), (3)

where zi > |fi(x)|, 1 ≤ i ≤ m, and µ > 0 (we assume that µ → 0 monotonically).
Barrier function (3) remains unchanged if we replace problem (2) by equivalent
problem

minimize
m∑

i=1

zi subject to f 2
i (x) ≤ z2

i , 1 ≤ i ≤ m. (4)

The necessary first-order (KKT) conditions for the solution of (4) have the form

m∑

i=1

2wifi(x)∇fi(x) = 0, 2wizi = 1, wi ≥ 0, wi(z
2
i − f 2

i (x)) = 0, 1 ≤ i ≤ m,

(5)

∗This work was supported by the Grant Agency of the Czech Academy of Sciences, project
No. IAA1030405 and the institutional research plan No. AV0Z10300504

190

where wi, 1 ≤ i ≤ m, are Lagrange multipliers. Since zi = |fi(x)|, 1 ≤ i ≤ m, at the
solution of (4), we can write (5) in a simpler equivalent form

m∑

i=1

ui∇fi(x) = 0,
uizi

fi(x)
= 1, z2

i − f 2
i (x) = 0, 1 ≤ i ≤ m, (6)

where ui = 2wifi(x) for 1 ≤ i ≤ m.
The special structure of problem (3) allows us to obtain minimizer z(x; µ) ∈ Rm

of function B(x, z; µ) for a given x ∈ Rn.

Lemma 1. Function B(x, z; µ) (with x fixed) has the unique stationary point, which
is its global minimizer. This stationary point is characterized by equations

2µzi(x; µ)

z2
i (x; µ)− f 2

i (x)
= 1 or z2

i (x; µ)− f 2
i (x) = 2µzi(x; µ), 1 ≤ i ≤ m, (7)

which have solutions

zi(x; µ) = µ +
√

µ2 + f 2
i (x), 1 ≤ i ≤ m. (8)

Assuming z = z(x; µ), we denote

B(x; µ) =
m∑

i=1

zi(x; µ)− µ
m∑

i=1

log(z2
i (x; µ)− f 2

i (x)) (9)

and u(x; µ) = u(x, z(x; µ); µ). In this case, barrier function B(x; µ) depends only
on x.

Lemma 2. Consider barrier function (9). Then

∇B(x; µ) = g(x; µ), (10)

where g(x; µ) = A(x)u(x; µ) =
∑m

i=1∇fi(x)ui(x; µ) with

ui(x; µ) =
2µfi(x)

z2
i − f 2

i (x)
, 1 ≤ i ≤ m, (11)

and
∇2B(x; µ) = G(x; µ) + A(x)V (x; µ)AT (x), (12)

where

G(x; µ) =
m∑

i=1

ui(x; µ)Gi(x) (13)

with Gi(x) = ∇2fi(x), 1 ≤ i ≤ m, and V (x; µ) = diag(v1(x; µ), . . . , vm(x; µ)) with

vi(x; µ) =
2µ

z2
i (x; µ) + f 2

i (x)
, 1 ≤ i ≤ m. (14)

191

Lemma 3. Let ∇2B(x; µ)d = −∇B(x; µ). If matrix G(x; µ) is positive definite, then
dT g(x; µ) < 0 (direction vector d is descent for B(x; µ)).

Since positive definiteness of matrix G(x; µ) is not assured, the standard line-
search methods cannot be used. For this reason, trust-region methods were devel-
oped. These methods use the direction vector obtained as an approximate minimizer
of the quadratic subproblem

minimize Q(d) =
1

2
dT∇2B(x; µ)d + gT (x; µ)d subject to ‖d‖ ≤ ∆, (15)

where ∆ is the trust region radius. Direction vector d serves for obtaining new point
x+ ∈ Rn. Denoting

ρ(d) =
B(x + d; µ)−B(x; µ)

Q(d)
, (16)

we set
x+ = x if ρ(d) ≤ 0, or x+ = x + d if ρ(d) > 0. (17)

Finally, we update the trust region radius in such a way that

∆+ = β∆ if ρ(d) < ρ,

∆+ = ∆ if ρ ≤ ρ(d) ≤ ρ, (18)

∆+ = β∆ if ρ < ρ(d),

where 0 < ρ < ρ < 1 and 0 < β < 1 < β.
Now we are in a position to describe the basic algorithm.

Algorithm 1.

Data: Termination parameter ε > 0, minimum value of the barrier parameter
µ > 0, rate of the barrier parameter decrease 0 < τ < 1, trust-region

parameters 0 < ρ < ρ < 1, trust-region coefficients 0 < β < 1 < β, step

bound ∆ > 0.

Input: Sparsity pattern of matrix A. Initial estimation of vector x.

Step 1: Initiation. Choose initial barrier parameter µ > 0 and initial trust-region
radius 0 < ∆ ≤ ∆. Determine the sparsity pattern of matrix ∇2B from
the sparsity pattern of matrix A. Carry out symbolic decomposition of
∇2B. Compute values fi(x), 1 ≤ i ≤ m, and F (x) =

∑
1≤i≤m |fi(x)|. Set

k := 0 (iteration count).

Step 2: Termination. Determine vector z(x; µ) by (8) and vector u(x; µ) by (11).
Compute matrix A(x) and vector g(x; µ) = A(x)u(x; µ). If µ ≤ µ and
‖g(x; µ)‖ ≤ ε, then terminate the computation. Otherwise set k := k+1.

Step 3: Approximation of the Hessian matrix. Compute approximation of matrix
G(x; µ) by using differences A(x + δv)u(x; µ)− g(x; µ) for a suitable set
of vectors v (see [1]). Determine Hessian matrix ∇2B(x; µ) by (12).

192

Step 4: Direction determination. Determine vector d as an approximate solution
of trust-region subproblem (15).

Step 5: Step-length selection. Determine x+ by (17) and set x := x+. Compute
values fi(x), 1 ≤ i ≤ m, and F (x) =

∑
1≤i≤m |fi(x)|.

Step 6: Trust-region update. Determine new trust-region radius ∆ by (18) and
set ∆ := min(∆, ∆).

Step 7: Barrier parameter update. If ρ(d) ≥ ρ (where ρ(d) is given by (16)),
determine a new value of barrier parameter µ ≥ µ (not greater than the
current one) by the procedure described below. Go to Step 2.

The use of the maximum step-length ∆ has no theoretical significance but is very
useful for practical computations. First, the problem functions can sometimes be
evaluated only in a relatively small region (if they contain exponentials) so that the
maximum step-length is necessary. Secondly, the problem can be very ill-conditioned
far from the solution point, thus large steps are unsuitable. Finally, if the problem
has more local solutions, a suitably chosen maximum step-length can cause a local
solution with a lower value of F to be reached. Therefore, maximum step-length ∆
is a parameter, which is most frequently tuned.

Direction vector d ∈ Rn should be a solution of the quadratic subproblem (15).
Usually, an inexact approximate solution suffices. The dog-leg method described
in [6], [2], seeks d as a linear combination of the Cauchy step dC = −(gT g/gT∇2Bg)g
and the Newton step dN = −(∇2B)−1g. The Newton step is computed by using ei-
ther sparse Gill-Murray decomposition [4] or sparse Bunch-Parlett decomposition [3].
The sparse Gill-Murray decomposition has the form ∇2B + E = LDLT = RT R,
where E is a positive semidefinite diagonal matrix (which is equal to zero when
∇2B is positive definite), L is a lower triangular matrix, D is a positive definite
diagonal matrix and R is an upper triangular matrix. The sparse Bunch-Parlett de-
composition has the form ∇2B = PLMLT P T , where P is a permutation matrix, L is
a lower triangular matrix and M is a block-diagonal matrix with 1×1 or 2×2 blocks
(which is indefinite when ∇2B is indefinite). The following algorithm is a typical
implementation of the dog-leg method.

Algorithm A: Data ∆ > 0.

Step 1: If gT∇2Bg ≤ 0, set s := −(∆/‖g‖)g and terminate the computation.

Step 2: Compute the Cauchy step dC = −(gT g/gT∇2Bg)g. If ‖dC‖ ≥ ∆, set
d := (∆/‖dC‖)dC and terminate the computation.

Step 3: Compute the Newton step dN = −(∇2B)−1g. If (dN − dC)T dC ≥ 0 and
‖dN‖ ≤ ∆, set d := dN and terminate the computation.

Step 4: If (dN − dC)T dC ≥ 0 and ‖dN‖ > ∆, determine number θ in such a way
that dT

CdC/dT
CdN ≤ θ ≤ 1, choose α > 0 such that ‖dC +α(θdN − dC)‖ =

∆, set d := dC + α(θdN − dC) and terminate the computation.

193

Step 5: If (dN − dC)T dC < 0, choose α > 0 such that ‖dC + α(dC − dN)‖ = ∆,
set d := dC + α(dC − dN) and terminate the computation.

The above algorithm generates direction vectors such that

‖d‖ ≤ ∆,

‖d‖ < ∆ ⇒ ∇2Bd = −g,

−Q(d) ≥ σ‖g‖min

(
∆,

‖g‖
‖∇2B‖

)
,

where 0 < σ < 1 is a constant. These inequalities imply (see [7]), that a constant
0 < c < 1 exists such that

‖d‖ ≥ cγ/B, (19)

where γ is the minimum norm of gradients that have been computed and B is an
upper bound for ‖∇2B‖ (assuming µ ≥ µ > 0, we can set B = m(G + g2/(2µ))).
Thus

B(x + d; µ)−B(x; µ) ≤ ρQ(d) ≤ −ρ σ c
γ2

B
if ρ ≥ ρ (20)

by (17) and (19).
Algorithm 1 is sensitive on the way in which the barrier parameter decreases.

We have tested various possibilities for the barrier parameter update including sim-
ple geometric sequences, which were proved to be unsuitable. Better results were
obtained by setting

µk+1 = µk if ‖gk‖2 > τµk or µk+1 = max(µ, ‖gk‖2) if ‖gk‖2 ≤ τµk, (21)

where 0 < τ < 1.
In the subsequent considerations, we will assume that ε = µ = 0 and all compu-

tations are exact.

Lemma 4. Let Assumption 3 be satisfied. Then values {µk}∞1 , generated by Algo-
rithm 1, form a non-increasing sequence such that µk → 0.

Lemma 5. The inequality

B(xk+1; µk+1) ≤ B(xk+1; µk)− L(µk+1 − µk) (22)

holds with some L ∈ R.

Theorem 1. Consider sequence {xk}∞1 , generated by Algorithm 1. Then

lim inf
k→∞

m∑

i=1

ui(xk; µk)gi(xk) = 0

and

ui(xk; µk) =
fi(xk)

zi(xk; µk)
, lim

k→∞
(z2

i (xk; µk)− f 2
i (xk)) = 0

for 1 ≤ i ≤ m.

194

Remark 1. If we replace (17) by

x+ = x if ρ(d) < ρ, or x+ = x + d if ρ(d) ≥ ρ (23)

in Algorithm 1, then limk→∞ ‖g(xk; µk)‖ = 0.

Corollary 1. Let assumptions of Theorem 1 and (23) hold. Then every cluster point
x ∈ Rn of sequence {xk}∞1 satisfies KKT conditions (6), where u ∈ Rm is a cluster
point of sequence {u(xk; µk)}∞1 .

The efficiency of Algorithm 1 was tested by using extensive collections of test
problems. The results are given in [5].

References

[1] T.F. Coleman, J.J. Moré: Estimation of sparse Hessian matrices and graph
coloring problems. Mathematical Programming 28, 1984, 243–270.

[2] J.E. Dennis, H.H.W. Mei: An unconstrained optimization algorithm which uses
function and gradient values. Report No. TR 75-246, 1975.

[3] I.S. Duff, M. Munksgaard, H.B. Nielsen, J.K. Reid: Direct solution of sets of
linear equations whose matrix is sparse and indefinite. J. Inst. Maths. Applics.
23, 1979, 235–250.

[4] P.E. Gill, W. Murray: Newton type methods for unconstrained and linearly con-
strained optimization. Mathematical Programming 7, 1974, 311–350.

[5] L. Lukšan, C. Matonoha, J. Vlček: Trust-region interior-point method for large
sparse l1 optimization. Report V-942, Prague, ICS AS CR, 2005 (to appear in
Optimization Methods and Software).

[6] M.J.D. Powell: A new algorithm for unconstrained optimization. In: Nonlinear
Programming, J.B. Rosen, O.L. Mangasarian, K. Ritter (eds.), Academic Press,
London 1970.

[7] M.J.D. Powell: On the global convergence of trust region algorithms for uncon-
strained optimization. Mathematical Programming 29, 1984, 297–303.

195

