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THE USE OF BASIC ITERATIVE METHODS FOR BOUNDING
A SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH

AN M-MATRIX AND POSITIVE RIGHT-HAND SIDE

Martin Kocurek

Abstract
This article presents a simple method for bounding a solution of a system of linear

equations Ax = b with an M-matrix and positive right-hand side [1]. Given a suitable
approximation to an exact solution, the bounds are constructed by one step in a basic
iterative method.

1. Motivation

When we use iterative methods for solving sets of linear algebraic equations
Ax = b, we guess an accuracy of the computed solution according to a residual
vector. Unfortunately, small norm of the residual vector doesn’t imply that we are
close to the exact solution. If we could instead construct an upper and lower bound,
we could guess an accuracy of the computed solution better.

2. Basic terms and definitions

Definition 2.1 Let matrices A, B have the same dimension. We say that A ≥ B
if aij ≥ bij holds for every i, j. Matrix A is called nonnegative, if A ≥ O, where
O is the zero matrix.

Definition 2.2 A real square matrix A = (aij)
n
i,j=1 is called M-matrix, if

1. aii > 0, i = 1, . . . , n,

2. aij ≤ 0 for i 6= j, i, j = 1, . . . , n,

3. exists A−1 ≥ 0.

Definition 2.3 Let us split matrix A into two matrices V , W , so that A = V −W .
If matrix V is nonsingular, then V −W is called splitting of matrix A. The splitting
of matrix A is called regular if V is nonsingular with V −1 ≥ 0 and W ≥ 0.

A splitting Ax = (V −W )x = b yields an iterative method

x(k+1) = V −1Wx(k) + V −1b,

which is convergent if and only if the spectral radius satisfies ρ(V −1W ) < 1.
As usual, we split matrix A into D − L − U , where D is the diagonal of A and

L, U are strictly lower and upper triangular parts of A, respectively. The classical
iterative methods are obtained by setting
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• V = I, W = I − A . . . Fixed-point iterations

• V = D, W = L + U . . . Method of Jacobi

• V = D − L, W = U . . . Method of Gauss-Seidel

From now on we consider matrix A to be an M-matrix and the right-hand side to be
positive. The three methods mentioned above can be written as

x(k+1) = Tx(k) + d, T := V −1W, d := V −1b.

Furthermore, for all these methods (for fixed-point iterations aii ≤ 1, i = 1, . . . , n,
is required) V −W is a regular splitting and (see [3], Theorem 3.13)

T ≥ 0, d > 0, ρ(T) < 1.

3. Bounds for the solution

Lemma 3.1 Let x be the exact solution to Ax = b. Let us consider an iterative
process x(k+1) = Tx(k) + d with T ≥ 0 and ρ(T) < 1. If

x(l+1) ≥ x(l) (1)

for some l ∈ N, then

x ≥ x(l+2) ≥ x(l+1). (2)

Similarly, if x(l+1) ≤ x(l) for some l ∈ N, then

x ≤ x(l+2) ≤ x(l+1).

Notice that condition (1) is equivalent to Ax(l) ≤ b, see [3]. Proof of this lemma is
easy and can be found in [1].

If we get an approximation x(k) and a modificating vector v, we will try to find
a vector y(k) = x(k) + δv so that this y(k) has property (1),

y(k+1) = Ty(k) + d ≥ y(k). (3)

Solving this inequality with variable δ we find a set of acceptable parameters δU . In
the same way we find δL by solving the opposite inequality. Then we set the upper
and lower bounds to be in the following form:

x(k) + δLv ≤ x ≤ x(k) + δUv.

Inequalities (3) have the form

δL(I −T)v ≤ r(k) and δU(I −T)v ≥ r(k), where r(k) = d− (I −T)x(k). (4)
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Sufficient condition for these inequalities to have a solution is (I − T)v > 0, or
equivalently

r(v) < d, (5)

where r(v) = d− (I −T)v. Thus, d− r(v) = (I −T)v and inequalities (4) will be

δL(d− r(v)) ≤ r(k), δU(d− r(v)) ≥ r(k).

Optimal solution, which yields the highest lower bound xL = x(k) + δLv and the
lowest upper bound xU = x(k) + δUv, is (index i denotes i-th component of a vector)

δL = min
i=1,...,n

r
(k)
i

di − r
(v)
i

, δU = max
i=1,...,n

r
(k)
i

di − r
(v)
i

.

Condition (I −T)v > 0 holds for any approximation v = x(k), which has its residual
vector r(k) < d, see (5). Here it is useful to have a positive right-hand side b (and
therefore d > 0). Therefore, if the residual vector of the approximation x(k) is small
enough, we may take v = x(k), r(v) = r(k) and the bounds will be

xU = x(k)(1 + δU), xL = x(k)(1 + δL),

where

δL = min
i=1,...,n

r
(k)
i

di − r
(k)
i

, δU = max
i=1,...,n

r
(k)
i

di − r
(k)
i

.

4. Application to irreducible Markov chains

Let us now consider a system corresponding to an automaton with n states. This
automaton changes its state, switches from one state to another, in certain time
steps. If a probability of switching to another state depends on the current state
only, we call this system Markov Chain. If there exists a connection between every
two states, we call this Markov chain irreducible.

Probability of transition from i-th state to j-th (if the system is in the i-th state)
is denoted by pij. In this manner we construct a transition probability matrix P,
which is stochastic (row sums are equal to 1).

A useful characteristic of Markov chain is its mean first passage times matrix, de-
noted M . Its elements mij are average times between leaving i-th state and reaching
j-th state (it is useful when j-th state is dangerous and means some kind of failure).
It is computed from the following equation, see [4],

M = P (M −MD) + E,

where MD = diag {m11, . . . , mnn} and E = (eij)
n
i,j=1, eij = 1, i, j = 1, . . . , n. If

we write this equation for each column separately, we get a set of linear algebraic
equations

[I − P (I − eie
T
i )]Mi = e,
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where Mi denotes the i-th column of M and e = (1, . . . , 1)T . Matrix of this system
is a diagonally dominant M-matrix and the method described above can be applied
to find bounds for the solution.

If we use the fixed-point iterations, M
(k+1)
i = P (I−eie

T
i )M

(k)
i +e, for solving this

problem with x(0) = e, we get an approximation x(k), which has its residual vector
r(k) < d = e (condition (5)), after k iterations, k ≤ n [1]. Usually it is k ¿ n.

5. Numerical example

We show these bounds in the following example. Let us consider a set of linear
equations with the right-hand side e and matrix ([2], p. 55–56)

A =




1 -1 0 0 0 0 0 0 0 0
0 1 -1/3 -2/3 0 0 0 0 0 0
0 0 1 0 - 0.8 0 0 0 0 0
0 0 0 1 -1/3 0 -2/3 0 0 0
0 - 1/7 0 0 1 -2/7 0 -4/7 0 0
0 0 - 0.2 0 0 1 0 0 -0.8 0
0 0 0 0 0 0 1 - 1 0 0
0 0 0 -1/3 0 0 0 1 -2/3 0
0 0 0 0 -1/3 0 0 0 1 -2/3
0 0 0 0 0 - 1 0 0 0 1




.

The method of fixed-point iterations with initial vector e is used for solving this
system. The first three columns of the following tables show the vectors of the lower
bounds xL, the vector of the exact solution x, and the vectors of the upper bounds
xU . Approximate solutions x(k) used for creating these bounds are presented in the
fourth columns and their residual vectors r(k) in the fifth columns. Furthermore, an
error factor δerr is computed as an additional criterion of convergence,

δerr = min
i=1,...,n

xL
i

xU
i

. (6)

6. Conclusions

Systems of linear algebraic equations with an M-matrix appear in many parts
of mathematics. If the right-hand side vector of the given system is positive, we may
use this simple method to bound the exact solution with help of basic iterative
methods.

The obtained bounds may be used to verify the accuracy of the computed solu-
tion. The approximate solutions xL, xU computed in Table 1 can be used to restart
the iterative process [1].
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Lower bnd. xL Exact sol. x Upper bnd. xU Approx. x(k) Residual r(k)

99.269406 105.000000 106.412140 79.876550 0.236850
98.320974 104.000000 105.395466 79.113400 0.236850
82.846169 87.579104 88.807202 66.661688 0.195356
104.635728 110.710448 112.164585 84.194530 0.247642
102.307712 108.223881 109.669062 82.321305 0.244195
98.700281 104.376119 105.802065 79.418607 0.237525
104.397207 110.453731 111.908902 84.002605 0.249366
103.464330 109.453731 110.908902 83.251972 0.249366
101.479317 107.325373 108.781061 81.654742 0.239748
99.647874 105.376119 106.817840 80.181082 0.237525

Tab. 1: Solution after k = 150 iterations, ‖r(k)‖= 0.752329, δerr=0.932877.

Lower bnd. xL Exact sol. x Upper bnd. xU Approx. x(k) Residual r(k)

104.727984 105.000000 105.062731 103.534808 0.013813
103.730431 104.000000 104.061990 102.548621 0.013813
87.354444 87.579104 87.633660 86.359207 0.011393
110.422097 110.710448 110.775045 109.164048 0.014442
107.943055 108.223881 108.288080 106.713250 0.014241
104.106702 104.376119 104.439464 102.920605 0.013852
110.166244 110.453731 110.518374 108.911110 0.014543
109.169430 109.453731 109.518374 107.925653 0.014543
107.047876 107.325373 107.390039 105.828270 0.013982
105.104214 105.376119 105.440165 103.906753 0.013852

Tab. 2: Solution after k = 450 iterations, ‖r(k)‖= 0.043876, δerr=0.996814.

Lower bnd. xL Exact sol. x Upper bnd. xU Approx. x(k) Residual r(k)

104.999085 105.000000 105.000210 104.995017 0.000047
103.999094 104.000000 104.000208 103.995064 0.000047
87.578349 87.579104 87.579287 87.574955 0.000039
110.709478 110.710448 110.710664 110.705188 0.000049
108.222936 108.223881 108.224096 108.218743 0.000048
104.375213 104.376119 104.376332 104.371169 0.000047
110.452765 110.453731 110.453948 110.448485 0.000049
109.452775 109.453731 109.453948 109.448534 0.000049
107.324440 107.325373 107.325590 107.320281 0.000048
105.375205 105.376119 105.376334 105.371122 0.000047

Tab. 3: Solution after k=1050 iterations, ‖r(k)‖= 0.000149, δerr=0.999989.
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Disadvantages of this approach are given by strict conditions that need to be
fulfilled. Most restrictive conditions are the positive right-hand side and the need
for a modificating vector. The positive right-hand side appears in some problems
arising in modelling of Markov chains. The modificating vector is obtained either by
computing a sufficient approximation, which is sometimes very difficult, or by using
an extremely slow iterative method. On the other hand, having the modificating
vector, one matrix-vector multiplication is enough to construct these bounds.
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