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REMARK ON COMPUTING THE ANALYTIC SVD∗

Dáša Janovská, Vladimı́r Janovský

Abstract

A new technique for computing Analytic SVD is proposed. The idea is to follow
branches for just one selected singular value and the corresponding left/right singular
vector.

1. Introduction

A singular value decomposition (SVD) of a real matrix A ∈ Rm×n, m ≥ n, is
a factorization A = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices
and Σ = diag(s1, . . . , sn) ∈ Rm×n. The values si, i = 1, . . . , n, are called singular
values. They may be defined to be nonnegative and to be arranged in nonincreasing
order.

Let A depend smoothly on a parameter t ∈ R, t ∈ [a, b]. The aim is to construct
a path of SVD’s

A(t) = U(t)Σ(t)V (t)T , (1)

where U(t), Σ(t) and V (t) depend smoothly on t ∈ [a, b]. If A is a real analytic
matrix function on [a, b], then there exists Analytic Singular Value Decomposition
(ASVD), see [1]: There exists a factorization (1) that interpolates classical SVD
defined at t = a, i.e.

• the factors U(t), V (t), and Σ(t) are real analytic on [a, b];

• for each t ∈ [a, b], both U(t) ∈ Rm×m and V (t) ∈ Rn×n are orthogonal matrices
and Σ(t) = diag(s1(t), . . . , sn(t)) ∈ Rm×n is a diagonal matrix;

• at t = a, the matrices U(a), Σ(a) and V (a) are the factors of the classical SVD
of the matrix A(a).

Diagonal entries si(t) ∈ R of Σ(t) are called singular values. Due to the require-
ment of smoothness, singular values may be negative and also their ordering may be
arbitrary. Under certain assumptions, ASVD may be uniquely determined by the
factors at t = a. For a theoretical background, see [9]. As far as the computation is
concerned, an incremental technique is proposed in [1]: Given a point on the path,
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one computes a classical SVD for a neighboring parameter value. Next, one com-
putes permutation matrices which link the classical SVD to the next point on the
path. The procedure is approximative with a local error of order O(h2), where h is
the step size.

An alternative technique for computing ASVD is presented in [12]: A non-
autonomous vector field H : R × RN → RN of a huge dimension N = n + n2 + m2

can be constructed in such a way that the solution of the initial value problem for
the system x′ = H(t, x) is linked to the path of ASVD. Moreover, [12] contributes
to the analysis of non-generic points, see [1], of the ASVD path. These points could
be, in fact, interpreted as singularities of the vector field H. In [11], both approaches
are compared.

A continuation algorithm for computing ASVD is presented in [7]. It follows
a path of a few selected singular values and left/right singular vectors. It is aimed to
treat large sparse matrices. The continuation algorithm is of a predictor-corrector
type. The relevant predictor is based on Euler method hence on an ODE solver.
In this respect, there is a link to [12]. Nevertheless, the Newton-type corrector
guarantees the solution with a prescribed precision.

The continuation may get stuck at the points, where a nonsimple singular value
si(t) turns up for a particular parameter t and index i. In [1, 12], such points are
called non-generic points of the path. They are related to the branching of singular
value paths. The code in [7] incorporates extrapolation strategies in order to “jump
over” such a point.

In the present contribution, we will review the continuation proposed in [7], see
Section 2. We suggest and investigate the idea to continue just one singular value
and the corresponding left/right singular vector. Finally, we report on numerical
experiments.

2. Preliminaries

Let us recall the notion of a singular value of a matrix A ∈ Rm×n, m ≥ n:

Definition 2.1 We say that s ∈ R is a singular value of the matrix A if there exist
u ∈ Rm and v ∈ Rn such that

Av − su = 0 , AT u− sv = 0 , ‖u‖ = ‖v‖ = 1 . (2)

The vectors v and u are called the right and the left singular vectors of the matrix A.

Note that s is defined up to its sign: if the triplet (s, u, v) satisfies (2) then at least
three more triplets

(s,−u,−v) , (−s,−u, v) , (−s, u,−v) ,

can be interpreted as singular values, left and right singular vectors of A.
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Definition 2.2 For a given s ∈ R, let us set

M(s) ≡
( −sIm A

AT −sIn

)
,

where Im ∈ Rm×m and In ∈ Rn×n are identities.

Definition 2.3 We say that s ∈ R is a simple singular value of a matrix A if there
exist u ∈ Rm and v ∈ Rn such that

(s, u, v) , (s,−u,−v) , (−s,−u, v) , (−s, u,−v)

are the only solutions to (2). A singular value s which is not a simple singular value
is called nonsimple singular value.

Remark 2.1 Let s 6= 0.

1. s is a simple singular value of A if and only if dim KerM(s) = 1.

2. s is a simple singular value of A if and only if s2 is a simple eigenvalue of
AT A. In particular, v ∈ Rn and u ∈ Rm,

AT Av = s2v , ‖v‖ = 1 , u =
1

s
Av ,

are the relevant right and left singular vectors of A.

Remark 2.2 s = 0 is a simple singular value of A if and only if m = n and
dim KerA = 1.

Remark 2.3 Let si, sj, si 6= sj, be simple singular values of A. Then si 6= ±sj.

Let us recall the idea of [7]: The branches of selected singular values and corre-
sponding left/right singular vectors si(t), Ui(t) ∈ Rm, Vi(t) ∈ Rn are considered i.e.,

A(t)Vi(t) = si(t)Ui(t) , A(t)T Ui(t) = si(t)Vi(t) , (3)

Ui(t)
T Ui(t) = Vi(t)

T Vi(t) = 1 (4)

for t ∈ [a, b]. The natural orthogonality conditions Ui(t)
T Uj(t) = Vi(t)

T Vj(t) = 0,
i 6= j, t ∈ [a, b], are added. Given p, p ≤ n, the selected singular values S(t) =
(s1(t), . . . , sp(t)) ∈ Rp, and the corresponding left/right singular vectors U(t) =
[U1(t), . . . , Up(t)] ∈ Rm×p, V (t) = [V1(t), . . . , Vp(t)] ∈ Rn×p are followed as t ∈ [a, b].

In the operator setting, let

F : R× Rp × Rm×p × Rn×p → Rm×p × Rn×p × Rp×p × Rp×p (5)

be defined as
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F (t,X) ≡ (
A(t)V − UΣ, AT (t)U − V Σ, UT U − I, V T V − I

)
, (6)

where X ≡ (S, U, V ) ∈ Rp×Rm×p×Rn×p, Σ = diag(S) and I ∈ Rp×p is the identity.
Under certain assumptions, the set of overdetermined nonlinear equations

F (t,X) = 0 (7)

implicitly defines a curve in R×RN , where RN , N = p(1+n+m), and Rp×Rm×p×
Rn×p are isomorphic. The image of F , namely Rm×p×Rn×p×Rp×p×Rp×p, and RM ,
M = p(m + n + 2p), are isomorphic.

The curve (7) can be parameterized by t, i.e. t 7→ X(t) = (S(t), U(t), V (t))
so that F (t,X(t)) = 0 as t ∈ [a, b]. Given a solution X(t) at t = a, the curve is
initialized. For this purpose, we may select p singular values and left/right singular
vectors computed via the classical SVD of the matrix A(a), see e.g. [4].

In [7], the tangent continuation, see [2], Algorithm 4.25, p. 107, is applied. It is
a predictor-corrector algorithm with an adaptive stepsize control. Let us note that
the sparsity of A(t) as t ∈ [a, b] can be exploited.

3. Continuation of a single singular value

In this section, we will consider the idea of pathfollowing of one singular value and
the corresponding left/right singular vector. We will expect the path to be locally
a branch si(t), Ui(t) ∈ Rm, Vi(t) ∈ Rn satisfying conditions (3)&(4) for t ∈ [a, b].

We consider the i-th branch, 1 ≤ i ≤ m, namely, the branch which is initialized
by si(a), Ui(a) ∈ Rm, Vi(a) ∈ Rn computed by the classical SVD, see [4]. Note
that the SVD algorithm orders all singular values in descending order s1(a) ≥ . . . ≥
si(a) ≥ . . . ≥ sm(a) ≥ 0. We assume that si(a) is simple. For the analysis of this
assumption, see Remark 2.1 and Remark 2.2.

Remark 3.1 Let s 6= 0.

1. If M(s)

(
u
v

)
= 0 then uT u = vT v.

2. If in addition M(s)

(
ũ
ṽ

)
= 0 then uT ũ = vT ṽ.

3. s is a singular value of A if and only if dim KerM(s) ≥ 1.

For M(s), see Definition 2.2.

Note that if si(t) 6= 0 then due to Remark 3.1 one of the scaling conditions (4) is
redundant. It motivates the following
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Definition 3.1 Consider a mapping

f : R× R1+m+n → R1+m+n ,

t ∈ R , x = (s, u, v) ∈ R1 × Rm × Rn 7−→ f(t, x) ∈ R1+m+n ,

where

f(t, x) ≡


−su + A(t)v
AT (t)u− sv
vT v − 1


 . (8)

As an alternative to (8) we will also use

f(t, x) ≡


−su + A(t)v
AT (t)u− sv
uT u + vT v − 2


 (9)

with an equivalent scaling.

The equation

f(t, x) = 0 , x = (s, u, v) , (10)

may locally define a branch x(t) = (s(t), u(t), v(t)) ∈ R1+m+n of singular values s(t)
and left/right singular vectors u(t) and v(t). The branch is initialized at t0 that plays
the role of t(a). It is assumed that there exists x0 ∈ R1+m+n such that f(t0, x0) = 0.
The initial condition x0 = (s0, u0, v0) ∈ R1+m+n plays the role of already computed
SVD-factors si(a) ∈ R1, Ui(a) ∈ Rm and Vi(a) ∈ Rn.

We solve (10) on an open interval J of parameters t such that t0 ∈ J .

Theorem 3.1 Let (t0, x0) ∈ J ×R1+m+n, x0 = (s0, u0, v0) be a root of f(t0, x0) = 0.
Assume that s0 6= 0 is a simple singular value of A(t0).

Then there exists an open subinterval I ⊂ J containing t0 and a unique function
t ∈ I 7−→ x(t) ∈ R1+m+n such that f(t, x(t)) = 0 for all t ∈ I and that x(t0) = x0.
Moreover, if A ∈ Ck(I,Rm×n), k ≥ 1, then x ∈ Ck(I,R1+m+n). If A ∈ Cω(I,Rm×n)
then x ∈ Cω(I,R1+m+n).

Proof Note that the assumptions yield that the partial differential fx(t
0, x0) ∈

R1+m+n × R1+m+n at (t0, x0) is a regular matrix.

Assuming A ∈ Ck(I,Rm×n), k ≥ 1, the statement is a consequence of Implicit
Function Theorem, see e.g. [6]. In case that A ∈ Cω(I,Rm×n), i.e. A is real analytic,
again Implicit Function Theorem holds, see [10]. ♦

In case that s0 = 0 is a simple singular value of A(t0), see Remark 2.2, the analysis
is much more complicated. In the present paper we prefer to announce the result as
a conjecture:
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Conjecture 3.1 Let (t0, x0) ∈ J × R1+m+n, x0 = (s0, u0, v0) be a root of
f(t0, x0) = 0. Assume that s0 = 0 is a simple singular value of A(t0) i.e. m = n and
dim KerA(t0) = 1. Let (u0)T A′(t0)v0 6= 0.

Then there exists an open subinterval I ⊂ J containing t0 and a unique function
t ∈ I 7−→ x(t) ∈ R1+2n such that f(t, x(t)) = 0 for all t ∈ I and x(t0) = x0.
Moreover, if A ∈ Ck(I,Rn×n), k ≥ 1, then x ∈ Ck(I,R1+2n). If A ∈ Cω(I,Rn×n)
then x ∈ Cω(I,R1+2n).

Let us compare:

Remark 3.2 Consider the defining equation (7) for p = 1. It represents an overde-
termined system for (t,X) ∈ R×R1+m+n. In [7], the condition (7) is meant in the
least-squares sense. The compatibility of the solution set to (7), see [2] p. 93 for the
notion, has been checked a posteriori. On the other hand, the formulation via (10)
suggests that the solution set (t, x) to (10) is under certain assumption an implicitly
defined curve in (t, x) ∈ R× R1+m+n.

The practical advantage of (10) is that we can use the ready-made packages for
continuation of an implicitly defined curves. In particular, we implemented a Matlab
toolbox MATCONT, [3].

In Conclusions to [7], we admitted that the continuation of a bunch of p selected
singular values and the relevant left/right singular vectors may get stuck. Note
that the same phenomena was reported as the alternative methods are concerned,
see [1, 12, 11]. In Introduction we noted that the continuation problems are related
to nonsimple singular values on the path (see Definition 2.3). In [1, 12], these points
are called non-generic.

Pathfollowing of the solution set of (10) via MATCONT is very robust. It does
not usually get stuck. On the other hand, one has to be careful when interpreting
the results. In principle, the minimal stepsize MinStepsize should be sufficiently
small.

In [8], the non-generic points of the path are considered. The claim is that
a non-generic point does not persist a sufficiently small perturbation of A(t). In
other words, given an A(t) on a finite interval a ≤ t ≤ b then, “usually”, the set of
non-generic points on the path is empty.

4. Numerical experiments

We consider the same problem as in [7] namely, the homotopy

A(t) = t A2 + (1− t) A1 , t ∈ [0, 1] , (11)

where the matrices

A1 ≡ well1033.mtx , A2 ≡ illc1033.mtx

116



are taken over from http://math.nist.gov/MatrixMarket/. Note that A1, A2 ∈
R1033×320 are sparse while A1 and A2 are well and ill-conditioned. The aim is to
continue

• 10 smallest singular values, left/right singular vectors of A(t),

• 10 largest singular values, left/right singular vectors of A(t).

The continuation is initialized at t = 0: The initial decomposition of A1 was com-
puted via SVDS, see MATLAB Function Reference.

The results of continuation are resumed on Figure 1 and Figure 2. The branches
are depicted in turns by solid and dash curves. This should underline that the
branches do not cross each other. The computation complies with Theorem 3.1.
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The zooms of the branches are shown on Figure 3. Each curve is computed as
a sequence of isolated points marked by circles. The adaptive stepsize control refines
the stepsize individually for each branch.

Note that the branches reported in [7] are not computed correctly. They cross
each other occasionally: In the case of a stagnation, the continuation algorithm tries
to jump over a prospective non-generic point on the path. A simple extrapolation
strategy is used to continue. The branching scenario often suggests to follow a wrong
branch. The message is that the branching is not generic.

In [7], the stepsize is always changed simultaneously for all p selected singular
values. Treating each branch individually, see Figure 3, is much more efficient.

As the second example, we consider another homotopy

A(t) = t A3 + (1− t) A4 , t ∈ [−3, 10] , (12)

where the matrices

A3 ≡ cavity01.mtx , A4 ≡ cavity02.mtx

are taken over from http://math.nist.gov/MatrixMarket/. A3, A4 ∈ R317×317 are
sparse square matrices.

The aim is to continue the smallest singular value and the relevant left/right
singular vector over the interval [−3, 10]. The plot of the smallest singular value vs.
t is shown on Figure 4. Note that s(t) changes sign. It illustrates Conjecture 3.1: If
the sign change occurs at t0, the condition (u0)T A′(t0)v0 6= 0 means that s(t) crosses
zero at t0 “transversally”, i.e. s′(t0) 6= 0. It complies with the situation on Figure 4.
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Fig. 4: The smallest singular value s versus parameter t.
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5. Conclusions

In order to perform the Analytic SVD, we suggested to compute separate
branches of singular values and the relevant left/right singular vectors. We can
use any standard software for the pathfollowing of an implicitly defined curve. It
seems, see [8], that the branches do not intersect generically. In other words, the
branching scenario which concerns non-generic points, see [1, 12], does not persist
sufficiently small perturbations of A(t). So far, the claim is not rigorously proved.
Nevertheless, the numerical experience supports the claim.

6. Appendix

We shall comment on Remark 3.1, Remark 2.1 and Remark 2.2. In particu-
lar, Remark 3.1 is based on Lemma 6.1 and Lemma 6.2, Remark 2.1 follows from
Lemma 6.3 and Remark 2.2 is due to Lemma 6.4. Let us prove the Lemmas.

Lemma 6.1 Let s 6= 0, M(s)

(
u
v

)
= 0. Then uT u = vT v.

Proof By definition, we assume

−su + Av = 0 , AT u− sv = 0 .

Multiplying the first equation by uT from the left and the second equation by vT

from the left, we get

uT u = −1

s
uT Av , vT v = −1

s
vT AT u .

Note that vT AT u = (Av)T u = uT Av. Therefore, uT u−vT v = −1

s
(uT Av−uT Av) = 0.

♦

Lemma 6.2 Let s 6= 0, M(s)

(
u
v

)
= 0, M(s)

(
ũ
ṽ

)
= 0. Then uT ũ = vT ṽ.

Proof We assume
−su + Av = 0 , AT u− sv = 0 ,

−sũ + Aṽ = 0 , AT ũ− sṽ = 0 .

Therefore,
ũT (−su + Av) = 0 , ṽT (AT u− sv) = 0 ,

uT (−sũ + Aṽ) = 0 , vT (AT ũ− sṽ) = 0 .

Since s 6= 0,

ũT u = −1

s
ũT Av , ṽT u = −1

s
ṽT AT u = −1

s
(Aṽ)T u
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and

uT ũ = −1

s
uT Aṽ , vT ṽ = −1

s
vT AT ũ = −1

s
(Av)T ũ .

We conclude that

ũT u− vT ṽ = −1

s
ũT Av +

1

s
(Av)T ũ .

Since vT ṽ = ṽT v and (Av)T ũ = ũT Av,

ũT u− ṽT v = 0 .

♦

Lemma 6.3 A triplet s 6= 0, u ∈ Rm and v ∈ Rn satisfies (2) if and only if

AT Av = s2v , u =
1

s
Av , ‖v‖ = 1 , s 6= 0 . (13)

Proof Let s 6= 0, u and v satisfy (2). From the first equation in (2), 0 = Av−su = 0,
we conclude that 0 = AT (Av − su) = AT Av − sAT s = AT Av − s2v since AT u = sv.

Moreover, su = Av, i.e. u =
1

s
Av.

Let s 6= 0, u and v satisfy (13). Then AT u−su = AT (
1

s
Av)−sv =

1

s
AT Av−sv =

sv− sv = 0 and Av− su = Av− s(
1

s
Av) = Av−Av = 0. Finally, uT u = uT (

1

s
Av) =

1

s
uT Av =

1

s
(AT u)T v =

1

s
svT v = 1. ♦

Note that a nonzero simple singular value s can be identified with a nonzero
simple eigenvalue s2 of the matrix AT A, see Lemma 6.3.

Lemma 6.4 s = 0 is a simple singular value of A if and only if m = n and
dim KerA = 1.

Proof Let m = n, dim KerA = 1. As a consequence, dim KerAT = 1. Then there
exist u ∈ Rm and v ∈ Rn such that

Av = 0 , AT u = 0 , ‖u‖ = ‖v‖ = 1 , (14)

i.e. (s = 0, u, v) satisfies (2). Clearly, (s = 0, u, v) and (s = 0,−u,−v) and
(s = 0,−u, v) and (s = 0, u,−v) are the only possibilities to solve (2).

If m > n then dim KerAT ≥ 2 and hence (14) has infinitely many solutions. If
dim KerA ≥ 2, one can also find infinitely many solutions to (14). ♦
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