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ON A SANDIA STRUCTURAL MECHANICS
CHALLENGE PROBLEM∗

Jan Chleboun

1. Introduction

A structural mechanics prediction problem was proposed by Ivo Babuška, Fabio
Nobile, and Raul Tempone as one of the uncertain input data problems specially
designed to challenge the participants of Validation Challenge Workshop, Sandia
National Laboratories, Albuquerque, NM, USA, May 21-23, 2006; see [1].

The prediction problem concerns the structure sketched in Figure 1 (left), the
coordinates of the joints are given in meters. The rods are joined by pins (zero
moment connections) at the junctions and hinges. The horizontal beam (number 4
in Figure 1 (left)) is loaded by a uniform force. The vertical displacement of P , the
midpoint of the horizontal beam, is denoted by δP and exaggerated. Since the force
acts downward, δP is negative; we refer to [1], where w(Pm) ≡ δP , for details.

The prediction problem is posed as follows: What is the probability that δP ≥
−3 mm? Or, in a broader sense: How can we assess the occurrence of the δP ≥
−3 mm phenomenon?

The difficulty of the problem lies in limited information about material parame-
ter E, the modulus of elasticity (Young modulus) of the truss structure members.
The material of the bars and the beam is represented by the Young modulus that
is assumed to be a homogeneous random field. The modulus and its probabilistic
properties are not known and have to be inferred and characterized from available
data. In [1], three embedded sets of data are presented. In this analysis, we confine
ourselves to the first, most limited dataset.

It comprises: a vector Ev
0 = (13.26, 10.86, 14.77, 10.94, 11.05) of five local values

of E in GPa, see the top five values in the third column of [1, Table 6]; a vector Ev
20 =

(11.65, 11.21, 11.45, 10.89, 11.67) of five averaged values of E (in GPa) inferred from
the elongation of sample rods 20 cm long (calibration experiments; cross-section area
A = 4 mm2, force F = 1200 N), see the top five values in the second
column of [1, Table 6] for the elongations; a vector Ev

80 = (11.94, 11.65) of two
averaged values of E (in GPa) inferred from the elongation of sample rods 80 cm
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Fig. 1: Prediction problem (left). Accreditation experiment (right).

long (validation experiments; A = 4 mm2, F = 1200 N), see the top two values in
the second column of [1, Table 7]; and δQ, a particular displacement observed in
a “similar”, point-loaded structure in an accreditation experiment [1], see Figure 1
(right) and the first value of w(P ) (correctly w(Q)) in [1, Table 8]. Vectors Ev

0 , Ev
20,

and Ev
80 stem from sampling random variables E0, E20, and E80, respectively.

The geometry of the structures as well as of the individual bars and beams
is exactly known. The structures are statically determined, therefore the load-to-
displacement mapping can be expressed by an explicit formula, see [1] for details.

2. Analysis

The probability distribution of the Young modulus value is unknown. The num-
ber of measurements is not sufficient to allow for strong results of a statistical analy-
sis; the estimates of probability related parameters would be poor. Nevertheless,
a stochastic-based approach will be used to tackle the uncertainty problem.

Let us identify the longitudinal axis of each rod with a local coordinate system
axis in such a way that the left end of the rod coincides with the origin. Along each
rod, the Young modulus is supposed to be a stationary random field, E(x), where
x ∈ [0, L] and L is the length of the rod. Some features of this field are assumed to be
independent of x. For example, E(E(x)), the expected value of the Young modulus
at point x, is assumed to be constant and independent of x and of a particular choice
of the rod; similarly for higher statistical moments. This is why we can identify E(x)
with an x-independent random variable E0 in certain analyses.

We have to assume that E(x1) and E(x2) are not mutually independent, especially
if x1 is “close” to x2. In other words, E(x1) and E(x2) are correlated. However, the
formula representing the model of correlation is not known. We will assume a formula
dependent on one parameter, called correlation length, that has to be determined
from the available data.
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The method of treating the prediction problem can be summarized as follows:
• Choose respective intervals I0 and I20 that exceed the range of the measured val-
ues Ev

0 and Ev
20. These intervals represent the assumed range of random variables E0

and E20.
• Assume a probability distribution of E0 and E20 (uniform or normal).
• For 1/E, assume a covariance function with an unknown correlation length Lcorr.
• By using the assumptions, calculate the correlation length Lcorr.
• By knowing Lcorr, infer I80, an interval representing the range of the random vari-
able E80, and check it against Ev

80. It is assumed that E80 retains the probability
distribution of E0 and E20 (uniform or normal).
• By knowing Lcorr, infer an interval representing the range of the random variable δQ

and check it against the value of δQ coming from the accreditation experiment.
• By knowing Lcorr, infer an interval representing the range of δP and check it against
the −3 mm limit given in the prediction problem. Try to make a conclusion.

Inevitably, expert opinion is required to make realistic assumptions needed in the
above-listed steps.

The intervals I0 and I20 are constructed to have a common center. They are
interpreted as either the respective intervals in which both E0 and E20 are uniformly
distributed (i.e., E0 and E20 do not exceed I0 and I20, respectively), or the intervals
covering 95% of normally distributed values E0 and E20 (i.e., the probability that
these random quantities leave their intervals is 0.05). The normal distribution as-
sumption can be challenged because normally distributed values of E would allow
for a negative Young moduli (with a low probability), which is physically impossible.

We have a double reason for using the normal distribution. First, we wish to
compare the results obtained for the uniform probability distribution with the re-
sults obtained for a non-uniform distribution. Second, we wish to minimize the use of
numerical methods, which is possible for the above-mentioned distributions. More-
over, the normal distribution assumption may still be adequate for understanding
the dominant behavior of the rods and structures.

Let us recall that E0 is a random field of local values of E, that is, a field identical
to E(x) except for the localization at a particular x.

We assume that the covariance function of 1/E is related to the variance of 1/E in
a particular way mediated through an Lcorr-dependent function (cf. [2, Example 1]):

cov
[
1/E(x1), 1/E(x2)

]
= var

(
1/E0

)
exp

(−|x1 − x2|/Lcorr

)
. (1)

If a bar of length L and cross-section area A is axially loaded by a force F , then
for δL, its elongation, holds

δL =
F

A

∫ L

0

1

E(x)
dx. (2)

Since E(x) is a random variable, δL is a random variable, too.
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By (2) used in var(δL) = E
[
δ2
L

]− (E[δL])2 and by (1), we infer

var(δL) =
F 2

A2

∫ L

0

∫ L

0

{
E

[
1/E(x1), 1/E(x2)

]− (
E

[
1/E0

])2
}

dx1 dx2

=
F 2

A2

∫ L

0

∫ L

0

cov
[
1/E(x1), 1/E(x2)

]
dx1 dx2

=
F 2

A2
var

(
1/E0

) ∫ L

0

∫ L

0

exp

(
−|x1 − x2|

Lcorr

)
dx1 dx2. (3)

If we define EL as the effective modulus of elasticity inferred from the prolongation
of the bar of length L via the equality δL = FL/(AEL), then EL is also a random
variable and its variance can be calculated as var(δL) = var(1/EL)F 2L2/A2. By this
equality combined with (3), we eliminate var(δL) and obtain

var(1/EL)

var(1/E0)
=

1

L2

∫ L

0

∫ L

0

exp

(
−|x1 − x2|

Lcorr

)
dx1 dx2. (4)

To solve (4), we evaluate var(1/E0) stemming from the assumed probability dis-
tribution of E0 in the interval I0. We evaluate var(1/EL) for L = 20 cm in a similar
way by using assumptions about E20 and I20. After exact integration (done analyti-
cally by Maple), the right-hand side of (4) becomes

2z + 2z2(exp(−1/z)− 1), where z = Lcorr/L, (5)

an explicit function of Lcorr and L. By using (5) and by fixing L = 20 cm, we can
numerically solve (4) for Lcorr.

As soon as var(1/E0) is inferred from the assumptions and Lcorr is known from (4),
we can use (4) to directly calculate var(1/EL) for L = 80 cm and the other bar
lengths appearing in the truss structures. We assume that var(1/E80) corresponds
to either a uniform or normal distribution of E80. Under these assumptions, we can
infer I80 as either the entire range of a uniformly distributed random variable E80 or
the 95% confidence interval of normally distributed random variable E80, and check
whether or not the validation data lie in I80.

To obtain the vertical displacements δQ and δP , the axial elongation of the rods
has to be combined with the bending of the transversally loaded beams, see [1] for
details. The bending is expressed by the Green function technique. As a consequence,
to compute the corresponding variance of the vertical displacements δQ and δP ,
integrals such as

∫ L

0

∫ L

0

φ(x1)ψ(x2) exp
(
−|x1 − x2|

Lcorr

)
dx1 dx2 (6)

have to be evaluated. In the most complex setting of (6), φ and ψ are continuous
piece-wise quadratic (in the accreditation experiment) or cubic (in the prediction
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problem) functions. Again, Maple is able to analytically integrate expression (6). In
a similar (but simpler) way, the respective means of δQ and δP can be calculated

through the knowledge of
∫ L

0
φ(x1)ψ(x2) dx1 dx2 and E[1/E0].

Since we have made various assumptions, it will be useful to parametrize at least
some of them to make the model partially parameter-dependent. By playing with
the values of the parameters and by analyzing the model response, we hope to get
at least some insight into the impact of uncertain inputs on the prediction problem
truss behavior.

Let us define Em as the mean of all the measured values of the Young modulus,
that is Ev

0 , Ev
20, and Ev

80 taken together, twelve values in total. Let us introduce
three fundamental parameters: Ecoef, Eratio

0 , and I20-to-I0 ratio. The first parameter
stands for a multiplicative coefficient that is used to control the centers of intervals
I0, I20, and I80 that are defined as coincident with EcoefEm. The second parameter,
Eratio

0 , is related to the distance between Ev
0 (the measured values) and the ends of

the interval I0 that covers Ev
0 . In detail, if Ic is the complement of I0 in the set

of real numbers, then Eratio = dist(Ic, E
v
0 )/l0, where l0 is the difference between the

maximum and the minimum of the measured values Ev
0 . Finally, the I20-to-I0 ratio

is simply the ratio of the length of I20 to the length of I0.

Let us comment on Figure 2. The uppermost graph depicts the measured values
Ev

0 , Ev
20, and Ev

80 (marked by×) as well as the respective intervals I0, I20, and I80 they
are embedded in. Unlike I0 and I20, which are assumed, I80 is calculated from the
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Fig. 2: Model outputs for fixed parameters.
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assumptions and (4). Two intervals I80 should be depicted; one determined by the
uniform distribution assumption, the other determined by the normal distribution
assumption. Since, however, they almost coincide, only one line appears in the
graph. The means of the measured values are marked by short vertical lines. The
long vertical line marks the average value of the Young modulus we assume and
calculate with, i.e., EcoefEm. Note that Ev

20 comprises five values but two of them
almost coincide.

The middle graph shows the measured δQ marked by a small circle, and the esti-
mated intervals for δQ constructed from the mean of δQ and the standard deviation
of δQ inferred via the method outlined on the previous pages. The width of the lines
marks the intervals determined by the mean and the first three multiples of (plus
and minus) the standard deviation. Intervals stemming from the uniform (U, upper
line) and normal (N, lower line) distribution of E0 are drawn.

In Figure 2, the last graph is a parallel to the graph described in the previous
paragraph, this time for δP , however. We see that the mean of δP is greater than the
given acceptable limit of δP (−3 mm, marked by ◦). Indeed, it is more than three
standard deviation values “on the safe side” even in the case of uniformly distributed
Young modulus values.

Figure 3 shows what happens if we let the I20-to-I0 ratio change. In other words,
we fix the interval encompassing the measured local Young moduli and we let the
interval I20 get larger and larger. As a consequence, the inferred interval I80 becomes
larger too, and the possible ranges of δQ and δP also increase. In Figure 3, the two
thin lines depict Eratio

20 and Eratio
80 . These quantities have the meaning similar to that

of Eratio
0 , but are defined by means of the pairs I20, Ev

20, and I80, Ev
80. The larger the

ratio, the larger the distance between the measured values of the Young modulus and
the ends on the respective intervals I20 and I80. The two assumptions on the random
variable distribution lead to two graphs of Eratio

80 . Since they almost coincide, only
one line is depicted in Figure 3.

The “accreditation” dash and dash-dotted lines show the ratio of the distance
between the measured δQ value and the calculated average of δQ to the standard
deviation of δQ. Again, two assumed distributions of E are considered (u, uniform;
n, normal).

The two thick lines that graph negative values depict the ratio of the difference
between the limit displacement of −3 mm and the calculated average of δP to the
standard deviation of δP . The uniform distribution assumption leads to a worse
separation from the limit displacement than the normal distribution assumption.
We observe that if the I20-to-I0 ratio increases, the distance between the set limit
(−3 mm) and the calculated average decreases, that is, the probability that δP ≤
−3 mm increases.

The ∗ and ¤ symbols stem from the Chebyshev inequality [3, Section 33.10,
inequality (3)], that is, they mark an upper bound on the probability that δP ≤
−3 mm; the estimates are multiplied by 10 in Figure 3. The values depend on the
assumed distributions of E (u, uniform; n, normal).
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Fig. 3: Model outputs for variable parameters.

The graphs in Figure 2 and Figure 3 might indicate that the probability of reach-
ing or exceeding the limit displacement in the prediction problem is sufficiently low
even if we allow for rather large intervals to cover Ev

0 and Ev
20. However, the graphs

corresponding to perturbed values of Ecoef (not displayed here) reveal a substantial
sensitivity of outputs to the assumed average of the Young modulus. Its decrease
(Ecoef = 0.98, for instance) seems to be acceptable from the view of the measured
data, but brings the predicted average displacement closer to the limit (less than
three standard deviations). To make a more definite conclusion on the prediction
problem solution, more data from measurements would be needed.
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