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ON A TRAFFIC PROBLEM∗

Lubor Buřič, Vladimı́r Janovský

Abstract

We consider a macroscopic follow-the-leader model of a road traffic. The novelty
is that we incorporate the possibility to overtake a slower car. We introduce two
ways to simulate overtaking. One is based on swapping initial conditions after the
overtaking occurs. Second approach is to formulate the problem as a Filippov system
with discontinuous right-hand sides.

1. Introduction

A massive traffic is the phenomenon of our civilization. The mathematical mo-
deling of traffic flows has a long tradition, see e.g. [1] for a recent review. We will
consider a class of macroscopic follow-the-leader models, see e.g. [2]: Consider the
system

dxi

dt
= yi ,

dyi

dt
= V (xi+1 − xi)− yi , xN+1 = x1 + L, (1)

i = 1, . . . , N . It models N cars on a circular road of the length L. The pairs
(xi, yi) are interpreted as the position xi ≡ mod(xi, L) and the velocity yi of the car
number i. The acceleration dyi/dt of each car depends on the difference between the
car velocity yi and the optimal velocity function V = V (xi+1− xi). In particular, we
will consider the hyperbolic optimal velocity function r 7→ V (r) defined as

V (r) = V max tanh (a(r − 1)) + tanh(a)

1 + tanh(a)
, (2)

where V max and a are positive constants. The choice of V imposes a driving law and
we assume that this law is the same for all N drivers. The difference

hi ≡ xi+1 − xi , i = 1, . . . , N , (3)

is called headway (of the i-th car). Note that we can also formulate the model (1) in
the state space of headway and velocity components

dhi

dt
= yi+1 − yi ,

dyi

dt
= V (hi)− yi , i = 1, . . . , N. (4)
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of Education, Youth and Sports, Czech Republic. The second author was supported by the Grant
Agency of the Czech Republic (grant No. 201/06/0356) and also by the research project MSM
0021620839 of The Ministry of Education, Youth and Sports, Czech Republic.
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Fig. 1: Velocity vs. time, headway vs. time: negative headway is non physical.

Given an initial condition [x0, y0] ∈ RN × RN , the system (1) defines a flow on
RN × RN

[x0, y0] 7→ [x(t), y(t)] ≡ Ψ(t, [x0, y0]) , t ∈ R . (5)

Without loss of generality, we may order x0 as

s ≤ x0
1 ≤ x0

2 ≤ · · · ≤ x0
N−1 ≤ x0

N ≤ L + s ,

where s ∈ R is an arbitrary phase shift. It is easy to check that there exists a family
of quasi-stationary solutions, see e.g. [2]. For example, in case N = 3 let x0 =
[s; s + L/3; s + 2L/3], y0 = [c; c; c], c ≡ V (L/3) where s ∈ R is an arbitrary phase
shift. Then the flow (5) is given by x(t) = [s + ct; s + L/3 + ct; s + 2L/3 + ct],
y(t) = [c; c; c] for all t. Therefore, velocity and headway components are constant.

These solutions were observed both stable and unstable. The stability exchange
is due to the Hopf bifurcation, see [3]: In certain parameter regions, quasi-stationary
solutions co-exist with periodic solutions to (1).

Fig. 1 shows the periodic solution for N = 3 cars and the parameter setting
L = 4.56281, V max = 7, a = 2. The periodicity concerns the velocity and head-
way components. In [4], the authors noted that the solutions to (1) which yield
the negative headway are problematic to interprete physically. They called them
non physical solutions. For example, the trajectory on Fig. 1 becomes non physical
since tE = 0.2074. Observe that

h2(tE) ≡ x2(tE)− x3(tE) = 0 , y2(tE) > y3(tE) . (6)

The natural interpretation is that the car No 2 is about to overtake the car No 3.

The authors of [4] tried to generalize the model (1) in such a way that the periodic
solutions become physical for a larger parameter regions. We will follow a different
idea. We are going to simulate the overtaking. The resulting model is a piecewise
smooth dynamical system composed by pieces of (1).
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2. Overtaking

The idea is as follows: On the left Fig. 2, three consecutive trajectories due to the
flow (5) are sketched. The headway of the k-th car, namely hk(t) = xk+1(t)− xk(t),
becomes negative for t > tE. Note that we can compute the time tE for which
hk(tE) = 0 within a prescribed precision in MATLAB environment (see odeset,
Event location). We define a new initial condition at t = tE by naturally swapping
[xk(tE), yk(tE)] and [xk+1(tE), yk+1(tE)]. The resulting trajectories, see Fig. 2 on the
right, have discontinuous first derivatives (the solid and dashed lines). Note that
xk on the right Fig. 2 corresponds to position of the k-th car only for t ≤ tE. For
t > tE, xk is position of the (k + 1)-st car. Overtaking algorithm solves the problem
in two runs, simulation with swapping of initial conditions and postprocessing to
produce final trajectories of cars. In the postprocessing stage, we assemble pieces of
the final trajectories on Fig. 3 from lines obtained on Fig. 2. They have continuous
derivatives and discontinuous headway components. The velocities are continuous.

Let us illustrate performance of the algorithm. We consider N = 14, V max = 34
and a = 2; the same data as in [3], Figure 9. The steady state at L = 15 is known
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Fig. 2: On the left: A sketch of three trajectories of the flow (5). On the right: The
trajectories after imposing the swap of the initial condition at t = tE.
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Fig. 3: On the left: Trajectory of the k-th car. On the right: Trajectory of the k + 1-st
car. The relevant headway components are discontinuous at tE.
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Fig. 4: A slightly perturbed steady state at t = 0, top left. Sequence of overtaking (Events):
No 8 overtakes No 9, symbolically [8 → 9] at time tE(1) = 1.9136, [7 → 9] at tE(2) =
2.0426, [6 → 9] at tE(3) = 2.2294, [11 → 12] at tE(4) = 2.2546, [14 → 1] at tE(5) = 2.4605.
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Fig. 5: Velocity and headway of the 8-th car vs time. No 8 overtakes No 9 and No
12. Dashed: The model without overtaking, i.e. y8(t). Since t = 1.9136, dashed solution
becomes non physical.

to be unstable. Perturbing this steady state slightly, we let the above algorithm
work till the time t = 3. There were indicated 18 swaps on the track. Five of them
are shown on Fig. 4. As an example, we describe the trajectory of the 8-th car for
0 ≤ t ≤ 3, see Fig. 5, giving a comparison with the “smooth” model (1).
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3. Long time behaviour

Given an initial condition [x0, y0] ∈ RN × RN and a time instant t ≥ 0, let the
above algorithm return the actual positions and velocities [x(t), y(t)] ∈ RN × RN of
all N cars on the track. We formally define

[x0, y0] 7→ [x(t), y(t)] ≡ Π(t, [x0, y0]) , t ≥ 0 . (7)

The aim is to investigate asymptotic properties of the overtaking model as t →∞.
We report on invariant objects we observed. For instance, in the case N = 3,
one can observe phase-shifted reflectionally symmetric oscillations similar to those
predicted for a ring of coupled oscillators, see [5], Chapter XVIII, § 4: Let N = 3,
V max = 7, a = 2 and L = 3.6998. Let us set x0 = [0.1504; 2.6756; 3.5599], y0 =
[4.2668; 5.1647; 2.9087]. Due to (7), the velocity y(t) is periodic, see Fig. 6. Its period
T can be computed numerically. The cars No 1 and No 2 oscillate out-of-phase with
the period T = 4.8525. The 3-rd car oscillates twice as rapidly as the other two.
The corresponding headway components h(t) oscillate similarly, see Fig. 7. Consider
N = 3 for simplicity. We will show that Overtaking Model, in the state space of
headway and velocity components, can be formulated as a Filippov system, see [6].

4. Formulation via a Filippov system

Let us consider N = 3. In this case we have only two possible configurations of the
cars on the road, see Fig. 8. In the first configuration, cars are running ordered “123”
along the circuit in the anticlockwise direction, whereas in the second configuration,
the cars are ordered “132”. It should be noted that the car numbering is fixed during
the computation. The configuration of the cars changes when any car overtakes the
other one.

Let us define new variables

hij = xj − xi , i 6= j , (8)

which describe a gap between the car No i and the car No j. It is clear that hji can
be computed from the relation

hji = L− hij , i 6= j , (9)

which reflects the fact that we consider a closed road. Therefore we can use h12, h23

and h31 as state variables, only. Remaining gaps h13, h21 and h32 can be computed
from the equation (9).

We will redefine the optimal velocity function as follows. We use the function (2)
on the interval [0, L] only, and repeat function values with period L, see Fig. 9 for
example. Driving law is independent on whether the car ahead is lap down or lap
forward. We denote this new periodic discontinuous optimal velocity function as Ṽ .
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Fig. 6: The velocity waveforms of period
T = 4.8363.
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Fig. 7: Discontinuous headway compo-
nents.

Fig. 8: Two possible configurations of the cars on the road.
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Fig. 9: Discontinuous optimal velocity function Ṽ ; V max = 7, a = 2, L = 2.5.

If the system is in the configuration “123” it is described by the following system
of differential equations

dh12

dt
= y2 − y1 ,

dy1

dt
= Ṽ (h12)− y1 ,

dh23

dt
= y3 − y2 ,

dy2

dt
= Ṽ (h23)− y2 , (10)

dh31

dt
= y1 − y3 ,

dy3

dt
= Ṽ (h31)− y3 .

After overtaking occurs, the configuration of the cars changes to “132” and then the
system (10) changes to the following one

dh12

dt
= y2 − y1 ,

dy1

dt
= Ṽ (h13)− y1 = Ṽ (L− h31)− y1 ,

dh23

dt
= y3 − y2 ,

dy2

dt
= Ṽ (h21)− y2 = Ṽ (L− h12)− y1 , (11)

dh31

dt
= y1 − y3 ,

dy3

dt
= Ṽ (h32)− y3 = Ṽ (L− h23)− y1 .

Finally, if
hij = kL , k ∈ Z , (12)

for some i, j then the i-th car and the j-th car are involved in overtaking. More pre-
cisely, if hij increases when it crosses the boundary (12), then the i-th is overtaken
by the j-th one. On the other hand, if hij decreases when it crosses the bound-
ary (12), then the i-th car overtakes the j-th one. During the computation, we swap
systems (10) and (11) after each overtaking. Since the function Ṽ is discontinuous
and right hand sides of systems (10) and (11) are different, the system given by
equations (10), (11) and (12) is a Filippov system, see [6].
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Fig. 10: The velocity components of the
solution of Filippov system (10),(11),(12).

Fig. 11: The gap components of the solu-
tion of Filippov system (10),(11),(12).

5. Comparison and comments

In this section, we provide a numerical solution of the discontinuous model. The
problem was solved in MATLAB by ode15s procedure with the event location to
detect overtaking. Special attention is paid to the comparison of the results given by
the overtaking algorithm described in the section 2 and 3 and results obtained from
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the discontinuous model. We have fixed values of parameters V max = 7 and a = 2.
Experiments were started from the “123” configuration.

The numerical solution was obtained for the length of the track L = 3.6998, with
the initial condition

[h12(0), h23(0), h31(0)] = [1.1396, 0.3138, 2.2464] , (13a)

[y1(0), y2(0), y3(0)] = [5.6485, 2.2919, 4.0906] . (13b)

Results are plotted on the Fig. 10 and 11. On each figure, the overtaking events are
marked by the full square.

The velocity components of the solution of both models are similar, compare
Fig. 10 and Fig. 6. This shows that both approaches results in the same behaviour
of the cars on the track.

Headway components of the solutions are not similar. The model (4) is identical
to the “123” configuration of the discontinuous model, i.e. the system (10). Thus,
h12 = h1, h23 = h2 and h31 = h3 until no overtaking occurs in the system. After
overtaking, since h1 = h13, h12 is not equal to h1 (until next overtaking occurs),
etc. Therefore, the solution curves on Fig. 11 correspond to that ones on Fig. 7 only
partially. Since the function h12(t) is the only one crossing the boundary represented
by the equation (12), the cars No 1 and No 2 overtake each other alternatively and
the car No 3 is not involved in any overtaking.

Let us note that gaps hij(t) are continuous functions, but headway components
hi(t) are discontinuous, see Fig. 11 and 7. The velocities yi are continuous but they
do not have continuous derivatives, see Fig. 10 and 6.
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