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ACCURACY INVESTIGATION OF A STABILIZED FEM FOR
SOLVING FLOWS OF INCOMPRESSIBLE FLUID∗

Pavel Burda, Jaroslav Novotný, Jakub Š́ıstek

Abstract

In computer fluid dynamics, employing stabilization to the finite element method
is a commonly accepted way to improve the applicability of this method to high
Reynolds numbers. Although the accompanying loss of accuracy is often referred, the
question of quantifying this defect is still open. On the other hand, practitioners call
for measuring the error and accuracy. In the paper, we present a novel approach for
quantifying the difference caused by stabilization.

Dedicated to Professor Ivo Babuška on the occasion of his 80th birthday.

1. Introduction

The finite element method equipped with stabilization has proven to be a powerful
tool for solving flows of incompressible fluids with high Reynolds numbers. But
applying stabilization can lead to a change of the approximate solution in a serious
way, as was discussed in [2].

The aim of our present research is to quantify the difference and find a way to
predict it. Application of a posteriori error estimates seems to be a promising way
to face these tasks.

Several numerical examples are presented to show the effect of stabilization and
to investigate the accuracy.

2. Mathematical model

The considered mathematical model is the system of Navier-Stokes equations in
two space dimensions (1) accompanied by the continuity equation (2). The aim is
to search the vector of velocity u(x, t) = (u1(x, t), u2(x, t)) ∈ [C2(Ω)]2 and pressure
p(x, t) ∈ C1(Ω)/R such that

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = f in Ω× [0, T ] , (1)

∇ · u = 0 in Ω× [0, T ] , (2)

where ν denotes kinematic viscosity and f(x, t) stands for intensity of volume force.

∗This research has been supported by grant No. 106/05/2731 of the Grant Agency of the Czech
Republic.
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Boundary conditions (3)–(4) are allowed. For time dependent problems, initial
condition (5) is considered.

u = g on Γg × [0, T ] (3)

−ν(∇u)n + pn = 0 on Γh × [0, T ] (4)

u = u0 in Ω, t = 0 (5)

For the solution by the finite element method, we consider the weak formulation
of the problem (1)–(2). We introduce function spaces based on Sobolev spaces

Vg =
{
v = (v1, v2) | v ∈ [H1(Ω)]2;Tr vi = gi, i = 1, 2, on Γg

}
,

V =
{
v = (v1, v2) | v ∈ [H1(Ω)]2;Tr vi = 0, i = 1, 2, on Γg

}
.

Now, we seek velocity u(x, t) = (u1(x, t), u2(x, t)) ∈ Vg such that u − ug ∈ V and
pressure p(x, t) ∈ L2(Ω)/R for t ∈ [0, T ] satisfying
∫

Ω

∂u

∂t
· vdΩ +

∫

Ω

(u · ∇)u · vdΩ + ν

∫

Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫

Ω

f · vdΩ (6)
∫

Ω

ψ∇ · udΩ = 0 (7)

for any v ∈ V and ψ ∈ L2(Ω). Operation “:” used in (6) is defined as

∇u : ∇v =
∂ux

∂x

∂vx

∂x
+

∂ux

∂y

∂vx

∂y
+

∂uy

∂x

∂vy

∂x
+

∂uy

∂y

∂vy

∂y
. (8)

3. Approximation of the problem by FEM

We use Hood-Taylor finite elements, which lead to the following function spaces

Vgh =
{
vh = (vh1 , vh2) ∈ [C(Ω)]2; vhi

|K∈ R2(K), i = 1, 2, vh = g in nodes on Γg

}

Qh =
{

ψh ∈ C(Ω); ψh |K∈ R1(K)
}

Vh =
{
vh = (vh1 , vh2) ∈ [C(Ω)]2; vhi

|K∈ R2(K), i = 1, 2, vh = 0 in nodes on Γg

}

where Vgh is the space for approximation of velocities, Qh for pressure and test func-
tions for the continuity equation, and Vh for test functions for momentum equations.
Here

Rm(K) =

{
Pm(K), if K is a triangle
Qm(K), if K is a quadrilateral

and Pm, Qm have the usual meaning. Among all the advantages of these elements,
we consider it to be rather important, that they lead to functions satisfying Babuška-
Brezzi (inf-sup) stability condition (9).

∃CB > 0, const. ∀ψh ∈ Qh ∃vh ∈ Vh (ψh,∇ · vh)0 ≥ CB‖ψh‖0‖vh‖1 (9)
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4. SemiGLS stabilization technique

In [4], semiGLS stabilization technique was derived as a modification of Galerkin
Least Squares method, proposed by Hughes, Franca, and Hulbert [3]. We search the
approximate velocity uh ∈ Vgh and pressure ph ∈ Qh satisfying in Ω

BsGLS(uh, ph;vh, ψh) = LsGLS(vh, ψh), ∀vh ∈ Vh, ∀ψh ∈ Qh , (10)

where

BsGLS(uh, ph;vh, ψh) ≡
∫

Ω

∂uh

∂t
· vhdΩ +

∫

Ω

(uh · ∇)uh · vhdΩ

+ ν

∫

Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ +

∫

Ω

ψh∇ · uhdΩ +

+
N∑

K=1

∫

K

[
∂uh

∂t
+ (uh · ∇)uh − ν∆uh +∇ph

]
· τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ,

LsGLS(vh, ψh) ≡
∫

Ω

f · vhdΩ +
N∑

K=1

∫

K

f · τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ .

Here τ denotes stabilization parameter. The way to determine it is mentioned in [2].
Index sGLS is an abbreviation of semiGLS.

5. Evaluating of the accuracy

A straightforward way to evaluate the effect of stabilization is to compute the dif-
ference between solution with and without stabilization. This method was proposed
in [2] accompanied by numerical examples and is applicable in the range of Reynolds
numbers, where we can solve the problem both with and without stabilization. Such
difference represents “pure distortion” caused by stabilization.

To get the idea about achieved accuracy of our solution, it is also suitable to
apply a posteriori error estimates. We use following estimate derived for Hood-
Taylor elements

U2(u1 − u1h, u2 − u2h, p− ph) ≤ E2(u1h, u2h, ph) , (11)

where the terms represent

U2(u1 − u1h, u2 − u2h, p− ph) = ‖(eu1 , eu2)‖2
1,K + ‖ep‖2

0,K ,

E2(u1h, u2h, ph) = C
[
h2

K

∫

K

(
r2
1(u1h, u2h, ph) + r2

2(u1h, u2h, ph)
)
dΩ

+

∫

K

r2
3(u1h, u2h, ph)dΩ

]
,
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and r1(u1h, u2h, ph), r2(u1h, u2h, ph), and r3(u1h, u2h, ph) stand for residuals of the
system (1)–(2); (u1, u2, p) denotes an exact solution, (u1h, u2h, ph) an approximate
solution computed by FEM, and (eu1 , eu2 , ep) = (u1 − u1h, u2 − u2h, p− ph) an error
of approximate solution. Constant C is determined from a numerical experiment
described in [1], as well as details on the a posteriori estimates.

Such approach is applicable for any Reynolds number, for which we can find solu-
tion by the stabilized method and estimates the whole difference between a stabilized
solution and an exact one.

6. Results of numerical experiments

To demonstrate the approach using a posteriori error estimates, we present results
for a problem of a lid driven cavity and a channel with a sudden extension of diameter.
Both problems are steady and the results for measuring distortion caused by the
stabilization can be found in [2].

In Figures 1 – 2, we can observe the effect of stabilization on streamlines inside
cavity for three levels of mesh fineness. A posteriori error estimates in the cavity are
presented in Figures 3 – 5. They represent the relative error in percents. We can
observe, that while the regions of higher error are decreasing for the Newton method
without stabilization when refining the mesh, they remain almost independent of
refinement for the stabilized method.

Geometry of the channel is described in Figure 6. Streamlines in the channel
for Reynolds number 1,000 are presented in Figure 7, and in Figure 8, there are
a posteriori error estimates to compare the differences.

Fig. 1: Streamlines, Re = 10,000, mesh 32×32 without stabilization (left) and by semiGLS
(right).
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Fig. 2: Streamlines by semiGLS, Re = 10,000, mesh 64×64 (left) and 128×128 (right).
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Fig. 3: A posteriori errors on elements, Re = 10,000, mesh 32×32 without stabilization
(left) and by semiGLS (right).
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Fig. 4: A posteriori errors on elements, Re = 10,000, mesh 64×64 without stabilization
(left) and by semiGLS (right).
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Fig. 5: A posteriori errors on elements, Re = 10,000, mesh 128×128 without stabilization
(left) and by semiGLS (right).
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Fig. 6: Geometry of the channel (dimensions in milimeters).

Fig. 7: Streamlines in the channel by the Newton method without stabilization (left) and
by the semiGLS algorithm (right), Re = 1,000.

7. Conclusion

We have developed a stabilized method and tested it on various problems, where it
provided promising results. This means, that we were able to reach markably higher
Reynolds numbers using this method than using method without stabilization.

The cost for using stabilization is a loss of accuracy. This loss is hard to predict,
but we are able to quantify it and estimate it a posteriori. We have presented two
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Fig. 8: A posteriori error estimates in the channel by the Newton method without stabi-
lization (left) and by the semiGLS algorithm (right), Re = 1,000.

approaches for such evaluation, based on comparing approximate solutions with and
wihout stabilization and on a posteriori error estimation.

As the main ideas resulting from the research we could mention, that for reaching
higher Reynolds numbers, stabilization should be efficiently combined with mesh
refinement, because both of these factors improve the stability of the method. We
have shown, that residual stabilization is not as innocent in practice as available
proofs of convergence claim, and people, who use stabilized methods, should be
aware of this fact and always take care of the final accuracy of their computations.
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