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THREE WAYS OF INTERPOLATION ON FINITE ELEMENTS ∗

Pavel Šoĺın, Karel Segeth

Abstract

Interpolation on finite elements usually occurs in a Hilbert space setting, which
means that interpolation techniques involving orthogonal projection are an alternative
for the traditional Lagrange nodal interpolation schemes. In addition to the Lagrange
interpolation, this paper discusses the global orthogonal projection and the projection-
based interpolation. These techniques are compared from the point of view of quality,
efficiency, sensitivity to input parameters and other aspects. Local optimality result
for the projection-based interpolation is presented.

1. Introduction

An important and often solved problem in numerical analysis is the approxima-
tion (usually interpolation) of functions. It has its place also in the finite element
method, in particular when some adaptive approach (e.g. hp-adaptivity) is applied.
The goal of the hp-adaptive computation is to approximate the solution, if it is
smooth, on a relatively large element of the partition of the domain by a polynomial
of a relatively high degree. Further examples are multigrid methods if we proceed
from a coarse to a fine grid, or approximation of the initial condition when we use
the finite element method of lines to solve a parabolic equation.

To show only the principles and minimize the necessary mathematical means,
we confine ourselves to the 1D case only. A generalization to more dimensions is
possible, see, e.g., [2], [5], [6].

We first consider the global orthogonal projection that gives the best results but
is, at the same time, the most expensive. The projection-based interpolation is
a compromise solution: we interpolate the function at the finite element nodes and
then apply the orthogonal projection on each element. The cheapest but not always
optimal (in particular, when the approximating polynomial is of a higher degree) is
the explicit nodal interpolation. The optimal evaluation algorithm, Horner scheme,
is used here. The error depends on the distribution of interpolation nodes.

Several examples to illustrate the above statements are presented.

2. Approximation and interpolation

Assume some restricted set of functions C (such as, for example, polynomial,
piecewise-polynomial or trigonometric polynomial functions) in a linear space V and

∗This work was supported by grants No. 201/04/1503 and 102/01/D114 of the Grant Agency
of the Czech Republic.
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a function g ∈ V that does not belong to C. The prototype approximation problem
is to find a suitable function gc ∈ C (approximation of g) such that gc is in some
sense close to g. The measure of the quality of the approximation can be some error
estimate, the norm ‖g − gc‖V if the space V is normed, or other conditions.

Approximation becomes interpolation when the sought function gc ∈ C has to
satisfy some additional constraints. These conditions are formulated generally as

Li(gc) = bi, i = 1, 2, . . . , Nc,

where Li : V → IR are linearly independent linear forms in V ′ and b1, b2, . . . , bNc

some given constants.
For example, the traditional Lagrange interpolation is obtained via the choice

Li(gc) = gc(xi)

and
bi = g(xi),

where x1, x2, . . . , xNc is a given set od distinct interpolation points in some domain
Ω, V = V (Ω).

There are many natural questions related to the approximation and interpola-
tion: What assumptions have to be put on V , C and g to ensure the existence and
uniqueness of the best approximation? What conditions the linear forms Li have to
obey to guarantee a unique solution of the interpolation problem? What can be said
about the error of the approximation and/or interpolation?

The analysis is highly nontrivial in the general setting of a basic linear or normed
space V and a general subset C ⊂ V . However, the good news is that all important
assumptions on the space V , set C and the function g, developed in the framework
of the abstract approximation theory, are fulfilled automatically when V is a Hilbert
space and C its closed subspace.

2.1. The Hilbert space setting

Let V = V (Ω) be a Hilbert space appropriate for the solved problem (usually the
H1 space), a(·, ·) : V × V → IR a bounded V -elliptic bilinear form, l ∈ V ′, and Vh,p

a finite-dimensional subspace of V determined by the finite element mesh Th,p, where
h and p are the discretization parameters, h usually controls the size of subintervals,
p the degree of approximating polynomials. Consider the solution u ∈ V of a model
continuous problem

a(u, v) = l(v) for all v ∈ V

and the solution uh,p ∈ Vh,p of the corresponding discrete problem

a(uh,p, v) = l(v) for all v ∈ Vh,p.

According to Céa’s lemma, the discretization error ‖u − uh,p‖V is bounded by the
interpolation properties of the subspace Vh,p ⊂ V and the continuity and V -ellipticity
constants Cc, Ce of the bilinear form a(·, ·),
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‖u− uh,p‖V ≤ Cc

Ce

inf
v∈Vh,p

‖u− v‖V =
Cc

Ce

dist(u, Vh,p)V .

Hence the interpolation properties of the space Vh,p are largely responsible for the
final form of the error estimate.

In practice we always have a particular interpolation operator P : V → Vh,p that
obviously satisfies

dist(u, Vh,p)V ≤ ‖u− Pu‖V .

Hence, for a sufficiently regular function u ∈ V it is our aim to estimate the in-
terpolation error ‖u − Pu‖V using some parameters of the mesh Th,p as well as the
regularity properties of the function u. A typical interpolation error estimate has
the form

‖u− Pu‖V ≤ C(u)hα,

where h = maxi hi is the mesh diameter, C(u) is a constant depending on the
regularity properties of the function u, and the exponent α usually depends on the
polynomial degrees of basis functions on finite elements in the mesh Th,p.

In addition to its application in error analysis, interpolation also finds practical
use in the finite element technology, when a given function g ∈ V needs to be
represented by a sufficiently close function gh,p ∈ Vh,p. Problems of this type are
encountered in the finite element solution of evolutionary problems, automatic hp-
adaptivity, multigrid methods, and in many other situations.

3. Global orthogonal projection (best approximation)

In the Hilbert space setting the question of existence and uniqueness of the best
approximation is trivial. Since Vh,p ⊂ V is finite-dimensional and therefore closed,
the closest approximation of a function g ∈ V in the norm ‖ · ‖V is its unique
orthogonal projection gh,p = Pg ∈ Vh,p. The orthogonal projection P is defined via
the condition

(g − gh,p, v)V = 0, for all v ∈ Vh,p. (1)

With some basis {v1, v2, . . . , vN} ⊂ Vh,p, (1) can be equivalently rewritten as

(g − gh,p, vi)V = 0, i = 1, 2, . . . , N. (2)

Expressing

gh,p =
N∑

j=1

yjvj (3)

and substituting into (2), one obtains a system of linear algebraic equations

N∑
j=1

yj(vj, vi)V = (g, vi)V , i = 1, 2, . . . , N, (4)
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for the unknown coefficients y1, y2, . . . , yN . Recall that N is the number of all the
basis functions on all subintervals and may be very large.

Example 3.1 Consider a domain Ω = (−1, 1) covered with a finite element mesh
Th,p = {K1, K2} consisting of two subintervals K1 = (−1, 0) and K2 = (0, 1). As-
sume the space V = H1

0 (−1, 1) related to some problem with homogeneous Dirichlet
boundary conditions. The finite element subspace Vh,p is defined as

Vh,p = {v ∈ V ; v|Ki
∈ P 1(Ki), i = 1, 2}.

Let us construct the best approximation gh,p ∈ Vh,p of the function

g(x) = 1− x4 ∈ V.

In other words, we are looking for a function gh,p ∈ Vh,p such that

dist(g, gh,p) = dist(g, Vh,p). (5)

The linear system (4) reduces to a single equation, which yields the best approxima-
tion gh,p,

gh,p(x) =





11
10

(1 + x), x ∈ K1,

11
10

(1− x), x ∈ K2,

depicted in Fig. 1.
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Fig. 1: Best approximation gh,p ∈ Vh,p of the function g ∈ V .

Notice that the best approximation gh,p does not coincide with the function g at
the grid point x = 0. This illustrates that an interpolant, that coincides with the
interpolated function at grid vertices, is not likely to be optimal in the norm ‖ · ‖V .
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However, in some applications the construction of the best approximation may be
too demanding from the practical point of view, since the cost of the calculation of gh,p

is similar to the cost of the solution of the global finite element problem. In such
cases the only possibility is to abandon the optimality requirement (5) and try to find
some less expensive interpolant that still profits from the availability of orthogonal
projection. The first natural choice is to combine the Lagrange interpolation of
vertex values with the orthogonal projection in element interiors.

4. Projection-based interpolation

A natural way to avoid the large linear system (4) is to split the interval Ω = (a, b)
into several subintervals Ω1, Ω2, . . . , Ωk, and to evaluate the interpolant gh,p locally.
From the algorithmic point of view, an obvious choice is Ωi = Ki, i = 1, 2, . . . , M .

Piecewise-linear case

In the simplest case when basis functions on all the elements K1, K2, . . . , KM

are linear, the continuity requirement implies that the projection-based interpolant
gh,p ∈ Vh,p be defined as the usual piecewise-linear vertex interpolant,

gh,p(xi) = gv
h,p(xi) = g(xi), i = 0, 1, . . . , M, (6)

where gh,p|Ki
∈ P 1(Ki) for all Ki ∈ Th,p, as illustrated in Fig. 2.

x
M−1

x
M

b = x
1

x
0

a = x

h,p
g

g

Fig. 2: Projection-based interpolation reduces to the usual piecewise-linear Lagrange in-
terpolation on elements.

Higher-order case

On a general higher-order finite element mesh Th,p, as the reader may guess,
the interpolation problem is decoupled by subtracting the piecewise-linear vertex
interpolant gv

h,p from the interpolated function g. The function g − gv
h,p vanishes at

all grid points and can be projected locally onto the polynomial spaces

P pi
0 (Ki) = {v ∈ H1

0 (Ki); v ∈ P pi(Ki)}, i = 1, . . . , M.
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In this way one calculates the bubble interpolant gb
h,p. The resulting interpolant gh,p

is then obtained as a sum of the vertex and bubble parts,

gh,p = gv
h,p + gb

h,p (7)

Since we are in H1
0 (Ki), either the full H1(Ki)-norm or the equivalent H1(Ki)-

seminorm can be used. The fact that the standard vertex interpolation is combined
with the orthogonal projection on higher-order subspaces is why one speaks about
projection-based interpolation.

Let us look at the projection part in more detail. The inner product associated
with the H1-seminorm has the form

(ϕ, ψ)1,Ki
=

∫

Ki

ϕ′(x)ψ′(x) dx, i = 1, . . . , M, (8)

and |ϕ|1,Ki
is the corresponding H1

0 -seminorm. The orthogonality condition that
determines gb

h,p is

((g − gv
h,p)− gb

h,p, v)1,Ki
= 0 for all v ∈ P pi

0 (Ki), (9)

which is equivalent to

((g − gv
h,p)− gb

h,p, ϑ
(i)
k )1,Ki

= 0, k = 2, 3, . . . , pi, (10)

where ϑ
(i)
k , k = 2, 3, . . . , pi, is a suitable basis of P pi

0 (Ki), i = 1, . . . , M . Denoting
by Lj the Legendre polynomial of degree j, and employing the standard higher-order
Lobatto bubble shape functions

lk(x) =

∫ x

−1

Lk−1(ξ) dξ, x ∈ (−1, 1), 2 ≤ k,

(that vanish at ±1) and the standard one-dimensional affine reference maps xKi
:

(−1, 1) → Ki, this basis can have the form

ϑ
(i)
2 (x) = l2(x

−1
Ki

(x)), (11)

ϑ
(i)
3 (x) = l3(x

−1
Ki

(x)),

...
...

ϑ(i)
pi

(x) = lpi
(x−1

Ki
(x)).

Equally, instead of the higher-order Lobatto bubble shape functions one can exploit
the traditional higher-order Lagrange nodal bubble shape functions θ2, θ3, . . . , θpi

associated with interior nodal points (and thus also vanishing at the interval end-
points).
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Expressing now

gb
h,p|Ki

=

pi∑
m=2

α(i)
m ϑ(i)

m

and inserting this linear combination into (10), one obtains on Ki a system of pi− 1
linear algebraic equations,

pi∑
m=2

α(i)
m

∫

Ki

(
ϑ(i)

m

)′ (
ϑ

(i)
k

)′
dx =

∫

Ki

(
g − gv

h,p

)′ (
ϑ

(i)
k

)′
dx, k = 2, 3, . . . , pi, (12)

for the unknown coefficients α
(i)
m . By the substitution theorem, (12) attains on the

reference domain (−1, 1) a very simple form

pi∑
m=2

α(i)
m

∫ 1

−1

l′m(ξ)l′k(ξ) dξ =

∫ 1

−1

(
g̃(i) − g̃

v(i)
h,p

)′
(ξ) l′k(ξ) dξ, k = 2, 3, . . . , pi. (13)

Here, g̃(i)(ξ) = g(xKi
(ξ)) and g̃

v(i)
h,p (ξ) = (gv

h,p(xKi
(ξ)) is nothing else than l0(ξ)g(xi−1)+

l1(ξ)g(xi).

H1

0

0

0
P (K)

g − g
h,p

g − g
h,p

− g
h,p

g
h,p

v

v b

b

Fig. 3: Graphical interpretation of the projection problem (13).

Lemma 4.1 (Local optimality of the projection-based interpolant) Let Ω =
(a, b) ⊂ IR be covered with a finite element mesh Th,p consisting of M finite ele-
ments Ki = (xi−1, xi) equipped with the polynomial degrees 1 ≤ pi = p(Ki). Let
g ∈ H1(Ω) ∩C(Ω), gh,p ∈ Vh,p its projection-based interpolant (7) and g̃h,p ∈ Vh,p an
arbitrary other interpolant satisfying

g̃h,p(xj) = g(xj) for all j = 0, 1, . . . , M.

Then
|g − gh,p|1,Ki

≤ |g − g̃h,p|1,Ki
for all i = 1, 2, . . . , M (14)

and consequently
|g − gh,p|1,Ω ≤ |g − g̃h,p|1,Ω. (15)

If the bubble interpolant gb
h,p is calculated using the full H1-product (·, ·)1 instead

of (8), the inequalities (14) and (15) hold with the full H1-norm ‖ · ‖1.
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Proof. The fact that the bubble interpolant gb
h,p is defined as the orthogonal projec-

tion of g − gv
h,p ∈ H1

0 (Ki) onto P pi
0 (Ki) implies that

|g − gh,p|1,Ki
= |(g − gv

h,p)− gb
h,p|1,Ki

= min
w∈P

pi
0 (Ki)

|(g − gv
h,p)− w|1,Ki

≤ |(g − gv
h,p)− (g̃h,p − gv

h,p)|1,Ki

= |g − g̃h,p|1,Ki
.

The integral |g − gh,p|21,Ω can be written as a sum

|g − gh,p|21,Ω =
M∑
i=1

|g − gh,p|21,Ki
.

The inequality (14) finally yields

M∑
i=1

|g − gh,p|21,Ki
≤

M∑
i=1

|g − g̃h,p|21,Ki
= |g − g̃h,p|21,Ω.

Everything works in the same way when the inner product (8) is replaced by the full
H1-product and the seminorm by the corresponding full H1-norm.

The projection problem (13) is illustrated in Fig. 3.
Let us close this paragraph by mentioning that the projection-based interpolation

is significantly more efficient than the full projection from Paragraph 3. The cost of
the local optimality on the elements Ki, i = 1, 2, . . . , M , is the solution of M systems
of pi − 1 linear algebraic equations.

However, if we use the Lobatto bubble shape functions lk, k = 2, . . . , pi, inner
products of their derivatives in (13) vanish for m 6= k, the matrix on the left-hand
part of (13) is diagonal and the solution of the system costs only pi arithmetic
operations.

5. Nodal interpolation

The last important interpolation technique is the Lagrange nodal interpolation,
which is based on the evaluation of the interpolated function at a given set of nodal
points, and a suitable set of interpolation polynomials. Depending on the selection
of the nodal points (such as, e.g., equidistant, Chebyshev, Gauss-Lobatto, Fekete or
other points [5], [6]), one obtains various variants of the general Lagrange interpola-
tion method, that produce different interpolants.

By Lemma 4.1, all Lagrange interpolants are equally or less accurate than the
projection-based interpolant (7). On the other hand, their explicit nature with no
system of linear equations solved makes them extremely efficient. The Lagrange
interpolation is a special case of nodal interpolation on general nodal elements (see,
e.g., [5]).
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Remark 5.1 Generally, the discretization of a PDE has nothing in common with
the interpolation on the finite elements. Therefore it may be useful to introduce two
sets of shape functions – discretization shape functions with optimal conditioning
properties, and interpolation shape functions that minimize the interpolation error.

Although the Lagrange interpolation is natural for Lagrange nodal elements and
the projection-based interpolation for Lobatto hierarchic elements, obviously the
projection-based interpolation can be performed on Lagrange nodal elements and
vice versa.

Interpolation conditions

Consider an interval Ki = (xi−1, xi) ⊂ Ω ⊂ IR and a set of arbitrary Lagrange

nodal points xi−1 = ỹ
(i)
1 < ỹ

(i)
2 < . . . < ỹ

(i)
pi+1 = xi. Using the affine reference maps

xKi
: (−1, 1) → Ki, define the corresponding points in the reference domain (−1, 1)

as yj = x−1
Ki

(ỹ
(i)
j ). On the element Ki, the interpolation conditions

gh,p

(
ỹ

(i)
j

)
= g

(
ỹ

(i)
j

)
for all 1 ≤ j ≤ pi + 1, gh,p ∈ Vh,p,

are equivalent to

(gh,p ◦ xKi
)(yj) = (g ◦ xKi

)(yj) for all 1 ≤ j ≤ pi + 1, gh,p ◦ xKi
∈ P pi(−1, 1).

Hence, the interpolation can be performed elementwise on the reference domain
(−1, 1). In practice a unique set of Lagrange nodal points is defined on the reference
domain and used for all elements.

A basic result related to the accuracy of the Lagrange interpolation in the maxi-
mum norm is formulated in the following lemma.

Lemma 5.1 (Error of the Lagrange interpolation) Let −1 = y1 < y2 < . . . <
yp+1 = 1 and g ∈ Cp+1([−1, 1]). Define

gh,p(x) =

p+1∑
i=1

(∏

j 6=i

x− yj

yi − yj

)
g(yi). (16)

There exists a ξy,
min{−1, x} ≤ ξy ≤ max{x, 1},

such that

g(x)− gh,p(x) =

∏p+1
i=1 (x− yi)

(p + 1)!
g(p+1)(ξy). (17)

Proof. The result obviously holds if x = yi. Hence suppose x 6= yi for all 1 ≤ i ≤ p+1,
and denote

e(x) = g(x)− gh,p(x).
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The function

σ(t) = e(t)−
∏p+1

i=1 (t− yi)∏p+1
i=1 (x− yi)

e(x)

has p + 2 distinct roots t = x and t = yi, 1 ≤ i ≤ p + 1. The mean value theorem
implies that σ′(t) has p+1 distinct roots. Applying the mean value theorem to higher
derivatives of σ, we find that σ(p+1)(t) has a single root ξy ∈ (min{−1, x}, max{x, 1}),
satisfying

0 = σ(p+1)(ξy) = g(p+1)(ξy)− (p + 1)!∏p+1
i=1 (x− yi)

e(x),

and (17) follows.

The function βp(x) =
∏p+1

i=1 (x− yi) in (17) is the only way the distribution of the
nodal points influences the distribution of the interpolation error. Compare with the
projection-based interpolation from Paragraph 4. where the interpolation error was
independent of the concrete representation of the polynomial space.

Let us look at βp(x) for equidistributed nodal points in Fig. 4. Notice the different
scales.
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Fig. 4: Error factor βp(x) for equidistributed nodal points, p = 4, 7, 10 and 13.

From these plots it is clear that the behaviour of the error e(x) = g(x)− gh,p(x)
is significantly worse near the endpoints than in the interior.

The Lagrange interpolation with equidistributed nodal points is known to be
notoriously bad. In his famous example from 1901, Carl Runge showed that the
sequence of Lagrange interpolants gh,p with equidistributed nodal points diverges for
otherwise a very nice function g(x) = 1/(1 + 25x2) in the interval (−1, 1) as p →∞
(for details see, e.g., [3]).
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Important special case – the Chebyshev interpolation

The Lagrange interpolant (16) based on the nodal points

yj = cos

(
π(j − 1)

p

)
, j = 1, 2, . . . , p + 1, (18)

is called the Chebyshev interpolant. The error factors βp for the Chebyshev interpo-
lation with p = 4, 7, 10 and 13 are shown in Fig. 5. Compare with Fig. 4 and notice
the different scales.
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Fig. 5: Error factor βp(x) for Chebyshev nodal points, p = 4, 7, 10 and 13.

Before introducing the basic Chebyshev interpolation error estimate, we need the
weighted L2-space

L2
w(−1, 1) = {v ∈ L2(−1, 1); v is measurable and ‖v‖0,w < ∞}

with

‖v‖2
0,w =

∫ 1

−1

|v(x)|2w(x) dx, (19)

where

w(x) =
1√

1− x2
, x ∈ (−1, 1),

is the Chebyshev weight function. The norm (19) induces an inner product

(u, v)w =

∫ 1

−1

u(x)v(x)w(x) dx

on L2
w × L2

w. Further define a weighted Sobolev space
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Hs
w(−1, 1) =

{
v ∈ L2

w(−1, 1); v(k) ∈ L2
w for all k = 1, 2, . . . , s

}

with the norm

‖v‖s,w =

(
s∑

k=0

‖v(k)‖2
0,w

)1/2

.

Here v(k) denotes the kth weak derivative of v.

Theorem 5.1 (Chebyshev interpolation error estimate) Let u ∈ Hs
w(−1, 1)

for some s ≥ 1. Let Ppu be the Chebyshev interpolant of degree p based on the p + 1
nodal points (18). Then there exists a constant C independent of u such that

‖u− Ppu‖0,w ≤ Cp−s‖u‖s,w.

Proof can be found, e.g., in [4]. The theorem shows that the Chebyshev inter-
polation converges. Among nodal interpolation schemes, Chebyshev interpolation is
very popular due to its accuracy. More details can be found, e.g., in [1], [3].
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