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ON STABILIZED FINITE ELEMENT METHOD IN PROBLEMS
OF AEROELASTICITY ∗

Petr Sváček

Abstract

In this paper we are concerned with the application of the stabilized finite element
method to aero-elastic problems. The main attention is paid to the numerical solu-
tion of incompressible viscous two dimensional flow around a flexibly supported solid
body. Typical velocities in this case are low enough to assume the air flow being incom-
pressible, on the other hand the Reynolds numbers are very high (104 − 106). As the
neccessary mesh refinement for standard Galerkin approximation is clearly unfeasible,
several possibilities of stabilization procedures (SUPG - streamline upwind/Petrov-
Galerkin, GLS - Galerkin Least Squares) is discussed. Moreover the application of
the stabilized method to an aeroelastic problem is presented.

1. Introduction

Fluid-structure interaction problems of fluid flow and elastic structures are stud-
ied in many technical disciplines - aeroplane industry (e.g., wings deformations),
blade machines (turbines, pumps), civil engineering (stability of bridges), etc. In
this paper we focus on the problems of fluid flow past a vibrating airfoil or a blade
profile. The research in aero-elasticity or hydro-elasticity focuses on the bilateral
interaction between moving fluids and structures (see e.g., [6], [15]). Widely used
commercial codes, e.g. such as NASTRAN, FLUENT or ANSYS, solve only special
problems of aero-elasticity or hydro-elasticity and mainly in the linear domain. The
simplified fluid flow description without resolving of fluid flow patterns is usually
employed in these packages.

On the contrary, in this paper the description of the fluid flow around a structure
is considered and resolved. As the main attention is paid to the numerical solution of
the fluid flow on moving meshes, the structural model is simplified and described as
a flexibly supported solid body. The further generalization of the structural model
can be included in the method.

The mathematical description of the flow field is represented by the system of the
Navier-Stokes equations and the continuity equation (see, e.g., [7]). The incompress-
ible flow problems include wide range of complications typical for numerical solution
of partial differential equations. The numerical solution is often found with the aid
of the finite element method (FEM). As an alternative to the FEM the finite volume
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method (see, e.g., [8], [9], [11]) also could be used. Nevertheless the extension of
FVM to higher order schemes is complicated.

The finite element velocity/pressure pair has to be suitably chosen in order to
satisfy the Babuška-Brezzi condition (BB; guarantees the stability of the scheme
[17]). The other possibility is to employ so-called fully stabilized scheme (e.g., GLS
– Galerkin Least Squares). Nevertheless for both approaches the considered high
Reynolds numbers (105 − 106) require a correct stabilisation of the convective term,
see, e.g., [1], [14], [18]. Both the proper choice of stabilizaton parameters and adap-
tive grid refinement are required in order to obtain reasonable solutions. As for the
mesh construction, we use the approach from [4].

Further, the structural deformation has to be taken into account. The structural
deformation/motion causes the deformation of the computational domain. The do-
main motion can be captured by the Arbitrary Lagrangian-Eulerian (ALE) method,
see, e.g., [16]. Finally, the system of the ALE formulation of the Navier-Stokes
equations, the continuity equation and the structural model written as a system of
ordinary differential equation have to be coupled.

2. Mathematical description of the problem

Mathematical description of an aero-elastic problem consists of coupled mathe-
matical models of fluid flow and structural deformations or body motion. For low
velocities the air flow over a profile can be considered as an incompressible viscous
fluid flow. The mathematical description of fluid flow in such a case is the system
of the Navier-Stokes equations and the continuity equation. This system is satisfied
even in the case when the computational domain is deformed. Nevertheless, the
discretization of the Navier-Stokes system in this case meets several difficulties (e.g.
grid nodes motion, mesh deformations , etc.). In order to overcome this drawback
the system of the Navier-Stokes equations is rewritten in the Arbitrary Lagrangian-
Eulerian formulation, which allows the time discretization in the moving meshes
case.

In this paper two dimensional fluid flow, which interacts with a flexibly supported
solid body, is considered. The rotation and vertical displacement are allowed and
described by a system of second order ordinary differential equations. Fluid forces
acting on the airfoil are involved in the system.

2.1. Fluid model

We start from the system of the incompressible Navier-Stokes equations in a bounded
domain Ωt ⊂ R2 and t ∈ (0, T )

∂

∂t
(ρui) +

2∑
j=1

∂

∂xj

(ρuiuj) =
2∑

j=1

∂τij

∂xj

, i = 1, 2, in Ωt

2∑
i=1

∂ui

∂xi

= 0, (1)
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where ρ is the constant air density, u is the air velocity with components u1 and u2,
τ is the stress tensor defined as

τij = ρ

[
pδij + ν

(
∂ui

∂xj

+
∂uj

∂xi

)]
, (2)

where p denotes the kinematic pressure (i.e. static pressure divided by the air den-
sity ρ) and ν denotes the kinematic air viscosity. The system of equations (1) is
equipped with boundary and initial conditions (for details see, e.g., [18]). Further-
more, the deformations of the computational domain arising from the structural
deformation can be treated with the aid of Arbitrary Lagrangian-Eulerian method.
The ALE method is based on the ALE mapping At of a reference configuration Ωref

onto the current configuration Ωt, with the domain velocity wg = ∂At/∂t ◦ A−1
t . In

the domain Ωt the Navier-Stokes system (1) is rewritten in the ALE form [16]

DA

Dt
(ρui) +

2∑
j=1

∂

∂xj

(ρujui)−
2∑

j=1

wg,j
∂

∂xj

(ρui) =
2∑

j=1

∂τij

∂xj

, i = 1, 2, in Ωt

∇ · u = 0, (3)

where wg,j are the components of the domain velocity wg. The symbol DA

Dt
denotes

the ALE derivative, i.e., the derivative with respect to original configuration. The
mesh motion as an outcome of ALE mapping is shown in Figure 1.

n+1
T

T
n

Fig. 1: Mesh motion and fluid velocity vectors at time moments Tn and Tn+1.
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The ALE derivative can be discretized by the following second order difference

DAui

Dt
≈ 3un+1

i − 4ûi
n + ûi

n−1

2τ
, i = 1, 2, (4)

where by ûk
i we denote the velocity component transformed from the domain Ωtk

onto the domain Ωtn+1 , i.e.

ûk
i = uk

i ◦ Atk ◦ A−1
tn+1

.

Next, the problem (3) is reformulated in a weak sense, which is suitable for the
solution with the aid of the finite element method. Defining the velocity spaces
(H1(Ω)0)

2 ⊂ XD ⊂ X = (H1(Ω))
2

(i.e., velocities from XD are zero on the Dirichlet
part ΓD of boundary ∂Ω) and the pressure space M ⊂ L2(Ω), it is easy to see that
the solution U = (u, p) ∈ (X, M) of problem (3) satisfies

a(U, V ) = f(V ) ∀ V = (v, q) ∈ (XD,M), (5)

where

a(U, V ) =
3

2τ
(u,v) + ν (∇u,∇v) +

(
(u · ∇)u,v

)
− (p,∇ · v) + (∇ · u, q) ,

f(V ) =
1

2τ

(
4un − un−1,v

)

and by (·, ·) we denote the scalar product in the spaces L2(Ω) and [L2(Ω)]
2
. Moreover,

we require that u satisfies the Dirichlet boundary conditions. The solution U = (u, p)
represents a solution on time level n + 1, i.e. un+1 := u and pn+1 := p.

Further, the use of the Galerkin FEM restricts the weak formulation from the cou-
ple of spaces (X,M) and (XD,M) to approximate spaces (Xh,Mh) and (XD,h,M):
find Uh ∈ (Xh,Mh) such that

a(Uh, Vh) = f(Vh) ∀ Vh = (v, q) ∈ (XD,h,Mh). (6)

The couple (Xh,Mh) of finite element spaces should satisfy the BB condition,
which guarantees the stability of the scheme. Nevertheless, this assumption can be
lately omitted. Although the Galerkin discretization (6) leads to the second order
accuracy, the approximate solution may suffer from spurious oscillations for high
Reynolds numbers. In order to avoid this drawback, it is well known that further
stabilization is required.

The stabilization introduces the additional stabilizing terms defined by

Lh,n(U, V ) =
∑
K

δK

(
3

2τ
u− ν4u + (w̃ · ∇)u +∇p, ψw̃(V )

)

K

,

Fh,n(V ) =
∑
K

δK

(
1

2τ

(
4un − un−1

)
, ψw̃(V )

)

K

, (7)

Ph,n(U, V ) =
∑
K∈τh

τk

(
∇ · u,∇ · v

)
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where w̃ stands for transport velocity w̃ := u − w
(n+1)
g and n indicates that dis-

cretization of the problem is treated on the time level tn. The linear term Ph,n

depends on time level only by the choice of constants τK . Several suitable choices of
the test function ψw̃(V ) are allowed.

• Streamline Upwind/Petrov-Galerkin (SUPG) method (see [1], [14])

ψw̃(V ) = (w̃ · ∇)v,

• Galerkin Least-Squares (GLS) method (see [13], [10]),

ψw̃(V ) = −ν∆v + (w̃ · ∇)v +∇q,

• Douglas-Wang (see, e.g., [5]) or Orthogonal Subgrid Scale (OSS) (see, e.g., [3])
method,

ψw̃(V ) = ν∆v + (w̃ · ∇)v +∇q.

The parameter δK is a function of local (element) Reynolds number Reloc based on
the transport velocity w̃. The proper setting of the stabilization parameters usu-
ally strongly depends on the employed couple of finite elements, local mesh quality,
transport velocity, local viscosity, etc. The resulting stabilized system also includes
so called grad-div stabilization Ph

a(Uh, Vh) + Lh,n(Uh, Vh) + Ph(Uh, Vh) = f(Vh) + Fh,n(Vh). (8)

Although the BB-stable pair of the finite element spaces was claimed, in the case of
GLS- or OSS-stabilizations, this assumption can be overcome. For details, numerical
analysis and selection of parameters δK and τK see, e.g., [18], [10].

2.2. Structural model

The airfoil can oscillate in the vertical direction and in the angular direction
around the so-called elastic axis. Such a motion is usually described by a linearized
system of ordinary differential equations, see, e.g., [6]. In order to simulate the airfoil
oscillations with large displacements we have to introduce geometrical nonlinearities
into the equations of motion (see [12], [6])

mḧ + khhh + Sα α̈ cos α− Sαα̇2 sin α = −L(t), (9)

Sαḧ cos α + Iαα̈ + kααα = M(t),

where L(t) denotes the aerodynamic lift force (upwards positive), M(t) denotes the
aerodynamic torsional moment (clockwise positive), m is the mass of the airfoil,
Sα, Iα are the inertia, static moments around the elastic axis, khh and kαα are the
bending/torsional stiffness, α is the rotational displacement around the elastic axis
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Fig. 2: Airfoil response for the far field velocity U∞ = 5 ms−1, the vibrations arising from
the initial deflection are damped at time by the aerodynamical forces.

(clockwise positive), h is the vertical displacement of the elastic axis (downwards
positive) and c is the airfoil chord.

The system of equations (9) is tranformed to a first-order ODE system and then
solved by the fourth-order Runge-Kutta method. The aerodynamic lift force L acting
in the vertical direction and the torsional moment M are defined by

L(t) = −
∫

ΓWt

2∑
j=1

τ2jnjdS, M(t) = −
∫

ΓWt

2∑
i,j=1

τijnjr
ort
i dS, (10)

where

τij = ρ

[
−pδij + ν

(
∂ui

∂xj

+
∂uj

∂xi

)]
, rort

1 = −(x2 − xT2), rort
2 = x1 − xT1, (11)

n = (n1, n2) is the unit outer normal to ∂Ωt on ΓWt (pointing into the airfoil) and
xT = (xT1, xT2) is the position of the elastic axis (lying in the interior of the airfoil)
and ρ is the fluid density.

3. Numerical results

The numerical simulation was performed for structural constants taken from [2].
The considered far field velocity range was 5 m s−1 – 50 m s−1, the kinematic air
viscosity ν = 1.5 · 10−5 ms−2 and the considered airfoil length was c = 0.3 m. The
resulting Reynolds number Re then was in range 104 − 105. The computation was
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Fig. 3: Isolines of the velocity magnitude at two different time instants around the vibrating
airfoil. The far field velocity in this case was U∞ = 40 ms−1.

performed for the Taylor-Hood pair of finite elements (piecewise quadratic velocity
components/piecewise linear pressure). The SUPG method on a triangular highly
anisotropic grid generated by ANGENER (see [4]) was employed. The numerical
results show a satisfactory agreement with conclusions of [2]. Figure 2 shows the
coupled problem airfoil response for the far field velocity U∞ = 5 ms−1. The airfoil
vibrations starting from the initial deflection are damped to the stable state. Besides
the computation of deflection parameters h and α also the time-space approximation
of the velocity components u1, u2 and the pressure p has to be resolved. Moreover,
in every time step the solution of the nonlinear problem has to be found. Figure 3
shows the isolines of the velocity magnitude for two different time instants.
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