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MAXWELL-KELVIN MODEL FOR HIGHLOFT MATERIALS ∗

Jana Př́ıvratská, Oldřich Jirsák, R. Bharanitharan

Abstract

Compression behaviour and elastic recovery of highloft materials are described by
the Maxwell-Kelvin rheological model. We present an algorithm how to determine
input parameters for this rheological model using experimental data.

1. Introduction

It was shown [1] that compressional resistance and elastic recovery (Fig.1) of
highloft nonwovens (low density fibrous network structures characterised by a high
ratio of thickness to weight per unit area) can be described by a rheological model
composed of Maxwell and Kelvin models arranged in series (M-K model), Fig.2.

Fig. 1: Behaviour of a highloft material in loading-recovery test.

Fig. 2: Maxwell-Kelvin model.

∗This work was supported by the Ministry of Education of the Czech Republic under the project
MSM 244100004 and by the PuC FLEX, s.r.o.
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2. Model description

Resulting deformation ε of this model is the sum of deformations ε1 of the Kelvin
model and (ε2 + ε3) of the Maxwell one, where ε2 describes deformation of its elastic
part. Both parts, Maxwell and Kelvin, are under the same stress σ [2]

σ = E2ε2 = ζ3
dε3

dt
= E1ε1 + ζ1

dε1

dt
, (1)

where E1, E2 are Young moduli of springs (elastic elements) and ζ1, ζ2 are viscosities
of viscosity elements. The stress-deformation relation is determined by the differen-
tial equation [2]

d2σ

dt2
+
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dt2
+
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E2
dε

dt
. (2)

(A) Loading modus
The material is compressed at time t = 0 and kept for some time t0.
As ε(t) = ε0 for t < t0, the right side of the equation (2) is equal to zero and we get
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+
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+
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σ = 0. (3)

The solution of the equation (3) under the initial conditions
σ(t = 0) = σ0,

σ
dt(t = 0) = v0 is

σ(t) =
σ0k2 − v0

k2 − k1

ek1t − σ0k1 − v0

k2 − k1

ek2t, (4)

where
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±
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]2 − 4
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E2
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]
. (5)

(B) Elastic recovery regime
At the moment t = t0 the stress σ(t0) = σ? is removed (σ(t) = 0 for t > t0) that
is folloved by a jump of deformation ε(t0) → ε? where ε? represents the elastic
recovery of the material. The plastic or tenacious deformation εp of the material is
the difference of the initial ε0 and the final εr deformations.

As the stress σ(t) = 0 for t > t0 the left side of the equation (2) is zero and we
get

0 = E2
d2ε

dt2
+

E1

ζ1

E2
dε

dt
. (6)

The solution of the differential equation (6) for elastic recovery regime respecting
the initial conditions σ(t0) = 0 and deformation ε(t0) = ε? is

ε(t) = ε3(t0) + ε1(t0)e
−E1

ζ1
(t−t0)

= εp + (ε? − εp)e
−E1

ζ1
(t−t0)

. (7)
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3. Determination of model parameters

Analysis of measured stress-deformation and recovery curves (Fig.1) makes pos-
sible to find the input parameters E1, E2, ζ1 and ζ2 for the model. In experiments
we can measure σ0, v0, ε0, εp, ε

?, ε(t) and σ(t).

The parameter E2 is determined from the equation (1)

E2 =
σ0

ε0

. (8)

The rate E1/ζ1 can be determined from the elastic recovery curve

X =
E1

ζ1

=
1

t− t0
ln

ε? − εp

ε(t)− εp

. (9)

From the equation (1) we can find the time dependence of deformation of the
viscosity element ε3(t) of the Kelvin model during the loading regime

ε3(t) =
1

ζ3(k2 − k1)

[σ0k2 − v0

k1

(ek1t − 1)− σ0k1 − v0

k2

(ek2t − 1)
]
. (10)

If t → ∞ the elastic parts are not deformed and therefore ε0 = ε(∞) = ε3(∞)
and the equation (10) tends to

ε3(∞) =
v0 + σ0[X + E2(

1
ζ1

+ 1
ζ2

)]

XE2

= ε0. (11)

From this equation (11) we are able to find values of

Y =
1

ζ1

+
1

ζ3

= − v0

σ0E2

= − v0

E2
2ε0

. (12)

Using the notation

Z = X + E2Y, (13)

and

D = Z2 − 4X
E2

ζ3

> 0 (14)

the equation (4) is changed into the form

σ(t) = e−
Zt
2

[σ0Y + 2v0

2
√

D
(e

√
Dt
2 − e−

√
Dt
2 ) +

σ0

2
(e

√
Dt
2 )

]
. (15)

From the equation (15) it is possible to find numerically
√

D and then values of all
input parameters of the Maxwell-Kelvin model:
the parameter ζ3 from the equation (14)

ζ3 =
4XE2

Z2 −D
, (16)

198



the parameter ζ1 from the equation (12)

ζ1 =
ζ3

Y ζ3 − 1
, (17)

and the parameter E1 from the equation (9)

E1 = Xζ1. (18)

4. Conclusion

Determination of input parameters for the M-K model from experiments enables
to find a set of constants characterising highloft materials and to make computer
simulations of other theoretical experiments in order to suggest their optimum design.
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