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THE DISCONTINUOUS GALERKIN METHOD
FOR LOW-MACH FLOWS ∗

Václav Kučera

1. Introduction

This work is concerned with the numerical solution of an inviscid compressible
gas flow with the aid of the discontinuous Galerkin finite element method. Our goal
is to develop a sufficiently accurate and robust method capable of solving flows with
a wide range of Mach numbers – the Mach number is the ratio of the velocity of
the flow to the local speed of sound. Since many numerical methods are capable of
solving the high Mach number case and fail for low-Mach flows, this work is focused
on overcoming the obstacles that arise when the Mach number tends to zero.

These obstacles include: a) severe limitations on the time step proportional to
the Mach number (CFL-like condition) when using explicit time discretization, b) the
fact that as the Mach number tends to zero, the compressible Euler equations tend to
a incompressible limit, therefore the implications of the theory of incompressible flows
must be taken into account (e.g. Babuška-Brezzi condition), c) a correct treatment
of inlet/outlet boundary conditions, which must be transparent for acoustic effects
(perturbations of density and pressure) d) the matrices involved in the numerical
solution become very ill conditioned.

To solve these problem a semi-implicitly linearized method derived in [4] is used,
allowing for much greater time steps than the explicit algorithms. However, this
method gives very bad results – it is shown that the choice of boundary conditions is
crucial in this matter. New boundary conditions are therefore proposed and tested
and a simple block Jacobi preconditioner is applied to the linear solver. The semi-
implicit time stepping combined with appropriate boundary conditions give a robust
algorithm capable of solving both high and low Mach number flows (Mach number
as low as 10−6).

2. Continuous problem

We shall be concerned with inviscid compressible two-dimensional flows. Let T >
0, Ω ⊂ IR2 and QT = Ω×(0, T ). We define disjoint boundary components ΓI , ΓO, ΓW ,
the inlet, outlet and impermeable wall respectively, such that ∂Ω = ΓI ∪ ΓO ∪ ΓW .

∗This research was supported by grant No. 201/05/0005 of the Grant Agency of the Czech
Republic and the grant No. MSM 0021620839 of the Ministry of Education of the Czech Republic.
The author is very much obliged to Prof. M. Feistauer for fruitful discussions
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We also define ΓIO = ΓI ∪ΓO. The system of Euler equations describing 2D inviscid
compressible flow can be written in the form of a conservation law for the state vector
w(x, t):

∂w

∂t
+

2∑
s=1

∂f s(w)

∂xs

= 0 in QT , (1)

where f s, s = 1, 2, are the inviscid fluxes and

w = (ρ, ρv1, ρv2, e)
T ∈ IR4,

f i(w) = (fi1(w), . . . , fi4(w))T = (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (e + p)vi)
T.

(2)

Here the following notation has been used: ρ - density, p - pressure, v = (v1, v2) -
velocity, e - total energy. Furthermore we add the following relation derived from
the equation of state:

p = (γ − 1)(e− ρ|v|2/2), (3)

where γ > 1 is the Poisson adiabatic constant.

3. Discontinuous Galerkin discretization

Let Th be a partition of the closure Ω into a finite number of triangles, whose
interiors are mutually disjoint. We define an index set I ⊂ Z+ = {0, 1, 2, . . .} such
that all elements of Th are numbered by indices from I. If two elements Ki, Kj ∈ Th

share a common face, we call them neighbours and set Γij = ∂Ki ∩ ∂Kj. For i ∈ I
we define s(i) = {j ∈ I; Kj is a neighbour of Ki}. By nij we denote the unit outer
normal to ∂Ki on the face Γij.

Over Th we define the broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th} (4)

and for v ∈ H1(Ω, Th) we set v|Γij
= trace of v|Ki

on Γij. The discontinuous Galerkin
finite element method uses a weak form of equation (1) in the sense of the space
[Hk(Ω, Th)]

4 and we approximate this space by the space of discontinuous vector-
valued piecewise polynomial functions

Sh = Sp,−1(Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th}, (5)

where Pp(K) is the space of all polynomials on K of degree ≤ p.
We multiply (1) by a test function ϕ ∈ [H1(Ω, Th)]

4 and integrate over Ki ∈ Th.
With the aid of Green’s theorem and summing over all i ∈ I, we obtain

d

dt

∑
Ki∈Th

∫

Ki

w ·ϕ dx =
∑

Ki∈Th

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx

−
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

2∑
s=1

f s(w)n
(s)
ij ·ϕ dS.

(6)
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In the second right-hand side term, we use the approximation

∫

Γij

2∑
s=1

f s(w)ns ·ϕ dS ≈
∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS, (7)

incorporating a numerical flux H, as known from the finite volume method. Now we
introduce the form

bh(w,ϕ) = −
∑
i∈I

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS,

(8)

where w|Γji
for Γij ⊂ ∂Ω is defined using appropriate boundary conditions. We can

define the DGFEM scheme as:

d

dt
(wh(t), ϕh) + bh(wh(t),ϕh) = 0, ∀ϕh ∈ Sh, ∀t ∈ (0, T ) (9)

with appropriate initial conditions.

4. Time discretization

Let 0 < t0 < t1 < . . . be a partition of the time interval (0, T ) and τk = tk+1− tk.
We seek wk

h ≈ wh(tk) such that
(

wk+1
h −wk

h

τk

,ϕh

)
+ bh(w

k+1
h , ϕh) = 0, ∀ϕh ∈ Sh, k = 0, 1, . . . , (10)

This backward Euler scheme however leads to a large system of highly nonlinear
equations. Therefore in [4] a simplified linearization of the form bh from problem (10)
is presented in order to obtain a large (sparse) system of linear equations instead.

We treat the interior and boundary terms in (10) separately:

bh(w
k+1
h ,ϕh) = −

∑
i∈I

∫

Ki

2∑
s=1

f s(w
k+1
h ) · ∂ϕh

∂xs

dx

︸ ︷︷ ︸
:=σ̃1

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(wk+1
h |Γij

,wk+1
h |Γji

,nij) ·ϕh dS

︸ ︷︷ ︸
:=σ̃2

.

(11)

For σ̃1 we use the homogeneity of the Euler fluxes, which implies f s(w) = As(w)w,
where As(w) = Df s(w)/Dw, s = 1, 2, and set

σ1 =
∑
i∈I

∫

Ki

2∑
s=1

As(w
k
h)w

k+1
h · ∂ϕh

∂xs

dx. (12)
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In order to treat the term σ̃2, the Vijayasundaram numerical flux is chosen. This
numerical flux is written in the form

HV S(wL,wR,n) = P+

(
wL + wR

2
,n

)
wL + P−

(
wL + wR

2
,n

)
wR, (13)

which is suitable for the linearization of the terms in σ̃2. For interior edges this reads:

∑
i∈I

∑

j∈s(i)

∫

Γij

[
P+

(〈wk
h〉ij,nij

)
wk+1

h |Γij
+ P−

(〈wk
h〉ij,nij

)
wk+1

h |Γji

] ·ϕh dS, (14)

where 〈w〉ij = (wij + wji)/2. For Γij ⊂ ΓIO we have no other choice than to treat
wk+1

h |Γji
explicitly, i.e. wk+1

h |Γji
≈ wk

h|Γji
. For Γij ⊂ ΓW the no-stick condition

is prescribed. This implies the form of the numerical flux on ΓW for extrapolated
pressure p:

HW (wL,wR,n) = p(0, n1, n2, 0)T. (15)

Written in conservative variables, (15) can be linearized, using again the homogeneity
of inviscid fluxes.

5. Boundary conditions

The choice of appropriate boundary conditions is a delicate problem which plays
a key role in the presented algorithm. Boundary conditions are incorporated into
the DGFEM, as in the finite volume method, via the choice of H(wL,wR,n) or
wR = w|Γji

for boundary edges. In the case of ΓW , we prescribe the boundary flux
(15). The situation is much more problematic on the inlet and outlet. One choice
often used in practice is to prescribe ρ and v and extrapolate p on the inlet and to
prescribe p and extrapolate ρ and v on the outlet. However these standard boundary
conditions reflect acoustic effects coming from the inside of Ω. This behavior is
nonphysical and the reflected interfering density and pressure waves corrupt the
solution in the low-Mach number case. To cure this disease new characteristic based
boundary conditions are derived, which reflect the hyperbolic character of the Euler
equations and are transparent to acoustic effects.

Using the rotational invariance and homogeneity we write the Euler equations in
the nonconservative form

∂q

∂t
+ A1(q)

∂q

∂x̃1

= 0, (16)

where q = Q(n)w and Q(n) is a standard 4 × 4 rotational matrix (see [1]). We
linearize this system around the state qi = Q(n)wi and obtain the linear system

∂q

∂t
+ A1(qi)

∂q

∂x̃1

= 0, (17)

which will be considered in the set (−∞, 0) × (0,∞) and equipped with the initial
and boundary conditions

q(x̃1, 0) = qi, x̃1 ∈ (−∞, 0) and q(0, t) = qj, t > 0. (18)
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The goal is to choose qj in such a way that this initial-boundary problem is well
posed, i.e. has a unique solution. This linearized system has a solution which can
be obtained using the method of characteristics. We get the following result:

We shall take some state q0
j = Q(n)w0

j . The state w0
j is the state vector of the

far-field flow, or the incoming fluid at the inlet, or the initial condition, depending
on the situation and interpretation. We calculate the eigenvectors rs, s = 1, . . . , 4
of the matrix A1(qi), arrange them as columns in the matrix T and calculate T−1

(explicit formulae can be found in [1] or [2]). We calculate

β = T−1qi, α = T−1q0
j . (19)

Now we calculate the state qj according to the presented process:

qj :=
4∑

s=1

γsrs = Tγ, γs =

{
αs, λs ≥ 0,

βs, λs < 0
(20)

and λs, s = 1, . . . , 4 are eigenvalues of A1(qi). Finally the sought boundary state is
wj = Q−1(n)qj.

In the framework of the presented theory, these boundary conditions seem to give
the natural choice for wj. Experiments show that this method applied to the inlet
and outlet give natural results. Undesired density and pressure waves pass through
the boundaries without any reflection, even when applied to low-Mach flows.

Fig. 1: GAMM channel density isolines for inlet Mach number 0.67.

6. Numerical experiments

The presented algorithm is tested on the GAMM channel (10% circular bump)
for inlet Mach number ranging from 0.67 (Figure 1) to 10−6 (Figure 2). In the
first case the characteristic Zierep singularity is present. In the latter case we see
the algorithm gives good results for very low Mach numbers. The method is also
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Fig. 2: GAMM channel Mach number isolines for inlet Mach number 10−6.

tested for the production of numerical viscosity – flow around a cylinder should be
symmetric. Figure 3 shows the presence of a small wake for inlet Mach number 10−2.
However, this effect is most likely caused by a insufficient representation of the curved
boundary (we currently use bilinear mappings on the reference triangle). Figure 4
shows that this effect diminishes as the Mach number tends to zero. In general, the
behavior of the presented method improves for very small Mach numbers.

Fig. 3: Flow around cylinder Mach number isolines for inlet Mach number 10−2.

141



Fig. 4: Flow around cylinder Mach number isolines for inlet Mach number 10−6.
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