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FINITE ELEMENT METHOD ON 3D MESH WITH LAYER
STRUCTURE — APPLICATION ON FLOW AND TRANSPORT
IN POROUS MEDIA*

Milan Hokr, Vladimir Wasserbauer!

Abstract

We introduce a formulation of the finite element method (FEM) adapted to typical
geometry of groundwater problems. The three-dimensional domain is discretized in
the following way: the projection to the horizontal plane is a triangulation (unstruc-
tured mesh) and the mesh is composed of layers in the space. Thus there is need to
define finite elements on trilateral prims. We show an alternative numerical solution
of porous media (potential) flow by means of combining the FEM on 2D triangle
mesh and finite differences in the vertical direction (1D columuns of mesh nodes). This
approach correspond to the fact that the horizontal dimension is much larger then
the vertical in the groundwater problems. The same numerical scheme can be also
formulated in terms of finite volume method, providing the mass balance property,
important for subsequent solution of the solute transport problem.

1. Introduction

The problems of groundwater flow and solute transport are well known as cases
for numerical solution, with important application in mining technologies and en-
vironmental protection. The current trend is the use of finite element and finite
volume method with increasing flexibility in problem geometry and input data. But
it is mostly difficult to measure all the input values in the governing equations and
it is often useful to adjust the model structure to the available input data. Such
a case is a construction of numerical model based on 3D mesh of trilateral prisms
with layered structure — based on the unstructured triangulation in horizontal pro-
jection and set of columns and layers in the vertical direction, which correspond to
the structure of sedimented rock.

The trilateral prismatic shape is not the standard case for the finite element
method. We cannot simply define the lowest order (linear) base function on this
shape. The apparently possible approaches are the bilinear functions derived from
the trilinear base function on hexahedron, or a decomposition of prism to three
tetrahedra with linear base function. The problem can be also solved in certain
sense more simply, starting from the definition of 2D finite element on triangles.
The method also keeps the nice property of the linear finite elements concerning
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the mass balance resulting from the equivalence with finite volume method [2]. The
proposed model is related to the standard approaches e.g. in the following ways:

e It is a generalization of finite differences on rectangular (quadrilateral) mesh
in vertical plane.

e It is a generalisation of quasi-3D model, where horizontal geological objects
are considered instead of numerical discretization: each groundwater collector
is represented as 2D (horizontal) and the communication through isolators is
added; see [4], [7].

2. Problem description

We consider the porous media fluid flow problem, i.e. fluid flow governed by the
Darcy’s law (see [1]). In the steady state, we solve the second-order elliptic equation

-~V - (KVh) =q (1)

where h is the piezometric head h = Q% + 2, K is the hydraulic conductivity (tensor),
q is the rate of sources/sinks, p is the pressure, p is the density, and g is the gravity
acceleration. Besides h, there is the velocity u = K'Vh as the unknown of interest.

The problems are typically described by mixed boundary conditions, i.e. the
boundary I' = 99 consist of parts Ty UTy UT3 = 99, where:

e Dirichlet boundary condition h = hp is prescribed on I'y
e Neumann boundary condition VA - U = uy is prescribed on I'y

e third type (Newton) boundary condition VA -/ = o(h— hs) is prescribed on I's

We will use this most simple problem for the derivation of the numerical method,
which can be in the same way formulated for the more complex cases, like unsteady
flow with saturated—unsaturated interface.

3. Discretization

The mesh topology is derived from a unstructured triangulation in 2D (horizontal
projection of the 3D mesh): We consider a set of nodes in a vertical line associated
with a node of 2D triangulation (we call it “multi-node”). The mesh consist of layers,
each with the same triangulation, with vertically connected nodes. In the sense of
volumetric objects, the mesh consists of trilateral prisms, ordered to columns (“multi-
elements”) and layers (Fig. 1). In general, the layers (i.e. bases of prisms) do not
need to be horizontal. We also admit two degenerated objects arising from prism by
merging one or two vertical pairs of nodes (necessary to represent incomplete layers).
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Fig. 1: Structure of the layered mesh and notation of the position indexing.

3.1. Notation of discrete quantities

We use indexing of objects by pair of “coordinates”: horizontal position by index
(or label) in unstructured triangulation and vertical position by index of layer (se-
quential order). The nodes in horizontal projection (multi-nodes) are indexed with
i€ {1,...,n;}, where n; is the total number of multi-nodes; we denote the projection
coordinates x;, y;. The triangles in the horizontal projection (multi-elements) are
denoted e,, o € {1,...,n,}, where n, is the total number of triangles, defined as
triples of vertices (multi-nodes) V' («) = {i1,142,i3}. We distinguish the planar layers
(2D planes with triangulation) and volume layers (set of prisms between two adjacent
planar layers). The planar layers are denoted as €, indexed by k € {0,...,ng}, with
node vertical coordinates z; ;. The volume layers indexing is determined by usual no-
tation for 1D discretization with half-integers, i.e. (k—1) for k € {1,...,n;}. Thus
the 3D discretization objects (i.e. elements for use by FEM) are indexed e,, ;- 1. The
length of vertical edge (distance of nodes) is Azi,k_% = 2 — 2 x—1 and we denote the
“distance of elements” (and the vertical dimension of dual volume associated with
node i, k) Az = %(Azi,kfé + AZLH%). See figure 1.

We also mention the notation for model input data according to above rules. We
consider the hydraulic conductivity in the form

K, K
7 zy Ty _ x zy
K = diag(K™,K,) where K™ = ( K., K, )

considering K™Y positive definite and K, >0. This is a special case of general conduc-
tivity tensor, which is symmetric positive definite following the physical principles.

We denote the conductivity values associated with 3D element as Kiyk,; and K7, .
’ 2 ’ 2

(i.e. the piece-wise constant inhomogeneity). The sources/sinks will be used as as-
sociated with either elements (kaf%) or nodes (dual volumes) Q; x.

We denote the unknown values of the piezometric head in the following way
to distinguish the semi-discrete and fully discrete case: the discretization in the z-
direction is set of functions in R? for all layers, i.e. hy(z,y) and the node values
(fully discretized) are H; .
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3.2. Dual mesh

We understand the term dual mesh in general as mesh of volumes associated
with nodes of the original mesh, with interfaces associated with edges of the original
(primal) mesh. For exact definitions under various assumptions we refer to [2]. We
use the dual mesh to derive the conservative approximation of velocity in section 4.4.
(necessary for subsequent solute transport calculation). The notation used for in-
dexing the unknown variables is simply the same as for nodes, i.e. ¢ for unstructured
horizontal position and k for vertical order. We note that the primal mesh variables
are indexed with « for triangle and (k—3) for layer.

4. Numerical scheme

4.1. Discretization of the problem in 2D x1D structure

We consider the equation of porous media flow (1). We separate the derivatives
in xy direction (horizontal) and in the z direction (vertical). With the assumption
K,. = K,. = 0 and using the above notation for remaining components of K, we
obtain

0 oh 0 0
T K Vah) = o (K ) =0 Vo= (5og) @

We discretize the z derivatives with first-order differences and apply the stan-
dard transformation of the first term leading to the weak formulation. We consider
a particular surface layer 2, and the Sobolev space H'(€);). Omitting the boundary
conditions, we derive

1 hri1—h hi, — h
(nyvxyhkzavxyqbk)ﬂk - ( K* 1M — K? 1M] ,¢k> =
Q

= (@ D)o (3)

which must hold for all k£ (layers). We note that the semi-discrete values hj and
K7 L1 are only associated with layer, not with element or node.
2

We use the standard piece-wise linear finite-element approximation, i.e. the un-
known function hy (for a particular layer) is expressed as

Z kgb x,Y), ¢§(azi,yi) = 0;; pcw. linear (4)

where we introduced the node values H; j (here the subscript j represent the meaning
of i, i.e. mesh projection node). We also apply the “mass lumping” technique for the
second term in (3), in similar way as the time-dependent problems [5]. The resulting
finite-element /finite-difference scheme is

AszAZ' jk — aHip1 +0H; ) —aHip 1 = Z Qak = Az, Vi,k  (5)

i€V (a)
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where

z  Sa 2z Sa

Ka’k+% = Ka’k_% 5

a= E —2— b=a+c c= E —_
: AZipy1 : Azig 1
o€V (a) TR o€V (a) T2

and the 2D layer FE stiffness matrix is Aj; = (K™V,¢}, Vo 05)a, -

4.2. Local matrix formulation

The scheme (5) can be regarded as a finite element method with unspecified base
function on trilateral prism. Any set of base function with variables in nodes produce
a local matrix 6 x 6. As well the scheme (5) can be written by assembly of “prism
local matrices” in the form

7(1) 0 0 —7(i1) 0 O

A 0 7(2) 0 0 —7(i2) 0
Alek—3) — Fik—j (A(a’kl) 0 ) 1 0 0 7(is) 0 0 —7(is)

2 0 Ak + 31 —rano o0 @) 0 o (6)
0 —7(i2) 0 0 7(iz) 0
0 0 —7(i3) 0 0 7(i3)
Kozz,kf%
AZi
and ¢ denote the nodes of the triangle in the horizontal projection V(«) = {41, i2, 3}
The first term is block diagonal matrix composed of local matrices of 2D finite ele-
ments on triangle (upper/lower base of prism), i.e. [A@F)], . = (¢F, D )eqar, (scalar
product of base functions (4)). The second term represents the finite difference

method in vertical direction.

Sa
where (a, k—%) is determination of the respective prismatic element, 7(i) =

4.3. Physical formulation of the scheme

We can also derive the scheme (5) by different way, which is physically illustrative
and allows the non-horizontal layers in contrast with the approach with separation
of z and xy cartesian coordinates. We consider a FE scheme of 2D flow in a layer
(normalised to a thickness Az; ), where the communication with neighbouring layers
is represented by source/sink, i.e.

Az, ZAZ-HJ‘,k = (qk: o), + (@rs P10y (7)
j=1
where the term ¢ is the total flux for two neighbour layers:
. [K*S;], [K*S;] -
ik = o (Hypy — Hip) + o= (Hipoy — H; 8
ik Azi,k+% (Hipy1 &)+ Azz‘,k—é (Hip—1 &) (8)

and [K*Sile = >, K7
i€V (o)
mesh: the thickness of the layer is Az;; and the cross-section area of a “channel”

along the primal mesh edge is > %—‘* (in the scheme weighted with K,).
aieV(a)

L il%‘l . This scheme is in fact formulated for the dual
’ 2

74



4.4. Approximation of velocity

The approximation of velocity by means of fluxes along edges follows from the
equivalence between the piecewise-linear finite-element method and cell-centred fi-
nite volume method on dual mesh. This approach is referred as control-volume
FEM [2], [3]. The FV transmissibilities are equal to FE stiffness matrix components,
allowing to express the fluxes between nodes (“dual” control volumes) as simply for
node pressure results of FEM as for FV formulation.

We can directly apply all these properties in a particular layer (2D linear FEM),
i.e. the fluxes between nodes i and j are w;; = A;;(H;— H;) (up to normalisation with
layer thickness). The vertical flux was expressed by the equation (8). Comparing
the terms in (8) with the component of local and global stiffness matrices of the
finite-element /finite-difference scheme (5), we derive that for both cases (horizontal
and vertical edge) the corresponding off-diagonal matrix component can be used as
transmissibility for flux calculation in the form w;; = A (H; — Hy) (here I and J
represent the full index of node, i.e. I = (i,k), A is the global stiffness matrix).

5. Conclusion

The presented numerical scheme for groundwater flow is implemented in the
form of computer model with full interface for mesh, material parameters, and ini-
tial/boundary condition and successfully used for solution of large-scale hydrogeolog-
ical problems in DIAMO Straz pod Ralskem (see [6]). The model solves wider set of
physical problem: unsteady water flow with unsaturated zone, advective transport,
and density driven flow. We plan to publish the methods and results in another
paper as well as a comparison with other finite-element approximations on prism,
both in local matrix components and in results, to confirm the consistency.
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