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NUMERICAL METHODS FOR MHD PROBLEMS

Michal Dostál

1. Introduction

Utilization of the magnetohydrodynamic (MHD) phenomena - mutual influence
of electromagnetic field and dynamics of motion of electrically conductive fluids - re-
presents one of very prospective technologies in the area of modern metallurgy. This
paper deals with numerical modelling of the stirring of molten metal in a cylindrical
crucible furnace by time-varying electromagnetic field. This time-varying electromag-
netic field is supposed to generate such eddy currents in the charge that the heat
produced by the corresponding Joule loss is approximately equal to the heat loss
due to convection to the neighbourhood and, moreover, these currents produce also
Lorentz forces making the liquid in the furnace move.

2. Formulation of the problem

The task is to model steady-state stirring of a molten metal by time-varying
electromagnetic field in a device for induction stirring (Fig. 1). Particular components
influencing the process that have to be taken into account are:

• molten metal (aluminium) 1 (characterised by a given mass density ρAl, specific
heat cAl, thermal conductivity λAl, dynamic viscosity ηAl, electric conductivity
γAl and permeability µAl),

• cylindrical fire-clay crucible 2 and lid 3 (thermal conductivity λF , electric con-
ductivity γF and permeability µF ),

• field coil 5 with N hollow turns made from material with electric conductivity
γCu and permeability µCu. The coil carries sinusoidal current of amplitude Iext

and angular frequency ω.

• Space 4 above the molten metal is supposed to be filled with air.

• Ambient air 6.

This task is formulated as a weakly coupled electromagnetic-hydrodynamic pro-
blem. The first step of solution is therefore to find the electromagnetic field and
corresponding distribution of the Lorentz forces in the liquid (that is considered in-
compressible). The second step is to find out consequent field of velocities. Moreover,
this task can be formulated as an axisymmetric problem.
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Fig. 1: Crucible with the molten metal. Fig. 2: Definition areas for particular
fields.

3. Mathematical model of the problem

3.1. Electromagnetic field

Its definition area is bounded by line ABCDA (Fig. 2). Line AD denotes the axis,
line ABCD represents a fictitious boundary characterised by conditions for open
boundary problems.

The harmonic magnetic field is described by the Helmholtz equation for the phasor
of vector potential A

△A− j ω γ µA = −µJ ext, (1)

where j denotes the imaginary unit and J ext the phasor of the current density of the
external sources. Particular forms of this equation for the subregions Ω1 to Ω6 can
be obtained after substituting correct parameters in accordance with Par. 2. The
boundary conditions have the form

A = 0 on line AD (antisymmetry), (2)

A = 0 on line ABCD (zero force line). (3)

Phasor f
L

of the Lorentz force producing motion of the liquid is given as

f
L

= J eddy × rot A, (4)

where J eddy (phasor of the eddy current density) follows from the relation

J eddy = j ω γ A. (5)
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3.2. Steady-state velocity field of the molten metal

The definition area for the considered velocity field is bounded by line IJKLI. We
suppose that swelling of level KL can be neglected.

The stationary laminar flow of the incompressible liquid is described by the
Navier-Stokes equation and continuity equation

ρ (v · ∇) v = −grad p + η △v + ρ g + f L, (6)

div v = 0, (7)

where p denotes pressure, v = vr r0 + vz z0 velocity of the fluid and g = −g z0; g is
free-fall acceleration. The boundary conditions have the form

vr = 0,
∂ vz

∂r
= 0 on line IL (symmetry), (8)

vr = 0, vz = 0 on line IJKL (laminar flow along solid wall). (9)

3.3. Steady-state temperature field

Its definition area is bounded by line EFGHE. This field is described by the
equation

div (λ grad T ) − ρ c v · grad T = −wJ , (10)

where T is temperature and wJ the density of the Joule loss that may be expressed
as

wJ =
J eddy × J ∗

eddy

γ
, (11)

J ∗

eddy being the complex conjugate to J eddy. Special forms of (10) for particular subre-
gions Ω1 to Ω3 may be obtained by substituting suitable parameters in accordance
with Par. 2. The boundary conditions have the form

∂ T

∂ n
= 0 on line EH (symmetry), (12)

−λ
∂ T

∂n
= α(T − T0) on line EF, GH (ambient air), (13)

T = Tc on line FG (field coil), (14)

where α denotes the coefficient of the convective heat transfer, T0 the temperature
of the ambient air, Tc the temperature of the field coil, n the outward normal.

4. Numerical solution and results of the problem

4.1. Electromagnetic field

Computation of the electromagnetic field was performed by the finite element
method, see, e. g., [1], [2]. Discretization of the domain Ω was constructed by trian-
gulation τh, which was chosen strongly non-uniform, because we assumed big changes

43



−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

r [m]

z 
[m

]

Fig. 3: Distribution of magnetic field. Fig. 4: Distribution of Lorentz forces in
the charge (max. value 2.7 10

5 N · m−3).

in the solution. The mesh was very fine in subregions Ω1, Ω2, Ω5. On the contrary,
near line ABCD the triangulation was chosen rougher. The mesh with 130,000 nodes
was applied. Distribution of the electromagnetic field was obtained by using pie-
cewise linear finite elements. The convergence of the solution was tested by total
Lorentz forces in the whole volume of furnace:

∫
Ω |f L|dV . Some results are presented

in several following figures. Fig. 3 shows the distribution of force lines. Obvious is
increased density of the force line near the surface of the charge that is caused by
very high density of eddy currents in well electrical conductive liquid metal. Fig.
4 depicts the distribution of the Lorentz forces in the charge. Their distribution is
strongly non-uniform and they fast decrease towards the axis of the crucible. This is
caused by non-uniformity of the magnetic field in the charge.

4.2. Steady-state velocity field of the molten metal

Computation of the steady-state velocity field was also performed by the finite ele-
ment method. Discretization of the domain Ω was constructed by uniform rectangular
mesh (3,000 nodes). We used piecewise quadratic finite elements for approximation
of the velocity and piecewise linear finite elements for approximation of the pressure.
Because the Navier-Stokes equations are nonlinear, we used the following iterative
process for the linearization of nonlinear terms (the solution of the Navier-Stokes
problem is approximated by a sequence of linear Oseen problems, see [3], [4]):

1. Let ṽr
0, ṽz

0 be guesses of vr, vz, respectively, and ε > 0 a given toleration.

2. For n = 0, 1, 2, . . .

(a) By the solution of Oseen problem we receive vn+1
r , vn+1

z .

(b) If vn+1
r

−ṽr

n

vn+1
r

< ε, vn+1
z

−ṽz

n

vn+1
z

< ε, END.
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(c) Repeat (a) with the new guesses

ṽr
n+1 =

vn+1
r + vn

r

2
, ṽz

n+1 =
vn+1

z + vn
z

2
. (15)

3. vn+1
r ≈ vr, vn+1

z ≈ vz.

But our problem is that this iterative process converges only for low Reynolds number
(Re < 1000), on the contrary, for a higher Reynolds number spurious oscillations
appear and the flow of molten metal in the furnace has Reynolds number around
107. So we started to solve the task with smaller Lorentz forces. For example, in
Fig. 5 there is another distribution of forces in the charge and in Fig. 6 there is
consequent velocity field of the molten metal. This result was received by using the
above mentioned iterative process. For the successful solution of this problem some
stabilization method for axisymmetric flow has to be found.
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Fig. 5: Distribution of forces (max. value
200 N · m−3).

Fig. 6: Consequent distribution of veloci-
ties.

4.3. Steady-state temperature field

Computation of the temperature field was performed by the finite element me-
thod, see, e. g., [3]. Discretization of the domain Ω was constructed by rectangular
mesh, which was chosen strongly non-uniform, because we assumed again big chan-
ges in the solution. The mesh with 10,000 nodes was applied. Distribution of the
temperature field was obtained by using piecewise quadratic finite elements. Fig. 7
shows distribution of the temperature in the molten metal. While the temperature
distribution in the molten metal is almost uniform, high gradient of temperature is
apparent on the wall of the crucible. This fact following from very different thermal
conductivities of the metal and fire clay is desirable particularly from the viewpoint
of the operation of the device.
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Fig. 7: Temperature field (max. value 630
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5. Conclusion

The presented electromagnetic-thermal-hydrodynamic problem was solved as a
weakly coupled task, but with respecting the influence of motion of the metal on the
distribution of the temperature field. In order to obtain the solution for flow with
a high Reynolds number it is necessary to find some stabilization scheme. Next work
will be aimed at the including of swelling of the charge level.
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[1] J. Polák: Variačńı principy a metody teorie elektromagnetického pole. Praha,
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