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USING DOMAIN DECOMPOSITION METHOD
FOR THE STRESS-STRAIN ANALYSIS

OF THE ARTIFICIAL JOINT REPLACEMENTS ∗

Josef Daněk

Abstract

The paper presents some results on mathematical simulations of a total knee joint
replacement. The finite element method and the non-overlapping decomposition tech-
nique for the contact problem in elasticity are applied. Numerical experiments are
presented.

1. Introduction

In the present paper we deal with the mathematical simulations of total knee re-
placements and simulations of mechanical processes taking place during static load-
ening. The model problem investigated will be formulated as the primal semi-coercive
contact problem with a given friction. For the numerical solution of the problem the
non-overlapping domain decomposition method is used.

2. The model

The model of the human knee is based on the contact problem in elasticity and on
the finite element approximation. Let the investigated part of the knee joint occupy
a union Ω of bounded domains Ωf and Ωt in IRN (N = 2). Domains Ωf and Ωt

denote separate components of the knee joint (the femur - f and the tibia together
with the fibula - t) with Lipschitz boundaries. Let the boundary ∂Ω = ∂Ωf ∪ ∂Ωt

consist of three disjoint parts such that ∂Ω = Γτ ∪Γu∪Γc. Let Γτ = 1Γτ ∪ 2Γτ , where
we denote the loaded part of the femur by 1Γτ and the unloaded part of the boundary
∂Ω by 2Γτ . By Γu, we denote the part of the tibia boundary where we simulate its
fixation. A common contact boundary between both joint components Ωf and Ωt

before deformation we denote by Γc = ∂Ωf∩∂Ωt. Let body forces F, surface tractions
P and slip limits gft be given.
We have the following problem: find displacements uι such that

∂

∂xj

τij(u
ι) + F ι

i = 0 in Ωι, ι = f, t, i = 1, . . . , N, (1)

where the stress tensor τij is defined by

∗The author has been supported by the Ministry of Education, Youth and Sport of the Czech
Republic, MSM 235200001.
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τij(u
ι) = cι

ijklekl(u
ι) in Ωι, ι = f, t, i = 1, . . . , N, (2)

with boundary conditions

τij(u)nj = Pi on 1Γτ , i = 1, . . . , N, (3)

τij(u)nj = 0 on 2Γτ , i = 1, . . . , N, (4)

u = u0 (= 0) on Γu, (5)

uf
n − ut

n ≤ 0, τ f
n ≤ 0, (uf

n − ut
n)τ f

n = 0 on Γc, (6)

|τ ft
t | ≤ gft on Γc,

|τ ft
t | < gft =⇒ uf

t − ut
t = 0,

|τ ft
t | = gft =⇒ there exists ϑ ≥ 0 such that uf

t − ut
t = −ϑτ ft

t .

(7)

Here eij(u) = 1
2
( ∂ui

∂xj
+

∂uj

∂xi
) is the small strain tensor, ni are the components of

outward normal to ∂Ω and t = (−n2, n1) is tangential vector. Normal component of
displacement vector u on the boundary is uf

n = uf
i n

f
i , resp. ut

n = ut
in

t
i. Tangential

component of displacement vector u on the boundary is uf
t = uf

i t
f
i , resp. ut

t = ut
it

t
i.

Normal and tangential components of stress vector are given by τ f
n = τ f

ijn
f
j n

f
i and

τ f
t = τ f

ijn
f
j t

f
i and τ ft

t ≡ τ f
t .

Assume that cι
ijkl are positive definite symmetric matrices such that

0 < cι
0 ≤ cι

ijklξijξkl | ξ |−2≤ cι
1 < +∞ for a.a. x ∈ Ωι, ξ ∈ IRN2

, ξij = ξij ,

where cι
0, cι

1 are constants independent of x ∈ Ωι.

Let us introduce W =
∏

ι=f,t[H
1(Ωι)]N , ‖v‖W = (

∑
ι=f,t

∑
i≤N ‖vι

i‖2
1,Ωι)

1
2 and

the sets of virtual and admissible displacements V0 = {v ∈ W | v = 0 on Γu},
V = u0 + V0, K = {v ∈ V | vf

n − vt
n ≤ 0 on Γc}. Assume that uf

0n − ut
0n = 0 on Γc.

Let cι
ijkl ∈ L∞(Ωι), F ι

i ∈ L2(Ωι), Pi ∈ L2( 1Γτ ), uι
0 ∈ [H1(Ωι)]N .

By reformulating the original problem, we arrive to the following variational
problem (P): find a function u, u− u0 ∈ K, such that

a(u,v − u) + j(v)− j(u) ≥ L(v − u) ∀v ∈ K (8)

holds, where
a(u,v) =

∑
ι=f,t

∫
Ωι cι

ijkleij(u
ι)ekl(v

ι) dx,

j(v) =
∫
Γc

gft | vf
t − vt

t | ds,

L(v) =
∑

ι=f,t

∫
Ωι F ι

i v
ι
i dx−∑

ι=f,t

∫
Γι

τ
P ι

i v
ι
i ds.

(9)

Let us define the sets of rigid displacements and rotations
P = P f × P t, P ι = {vι = (vι

1, v
ι
2) | vι

1 = aι
1 − bιx2, v

ι
2 = aι

2 + bιx1}, where aι
i, i = 1, 2,

and bι are arbitrary real constants and ι = f, t.

35



It can be shown that the problem (8) has a unique solution if:

L(v) < j(v) ∀v ∈ P ∩K − {0},
{v ∈ P ∩ V0 | vf

n − vt
n = 0 on Γc} = {0}

and |L(v)| > j(v) ∀v ∈ P ∩ V0 − {0}.

3. Short description of the domain decomposition algorithm

The principle of domain decomposition method consists in splitting domain on
smaller subdomains so that the dimensions of partial problems are smaller than the
dimension of the original problem. Let every domain Ω

ι
= ∪J(ι)

i=1 Ω
ι

i, where J(ι) is
a number of subdomains of Ωι. Suppose that subdomains Ωι have Lipschitz bound-
aries. Let Γι

i = ∂Ωι
i\∂Ωι, ι = f, t, i ∈ {1, . . . , J(ι)}, be a part of interface boundary

Γ = ∪ι=f,t ∪J(ι)
i=1 Γι

i. Let

T ι = {j ∈ {1, .., J(ι)} : Γc ∩ ∂Ω
ι

j = ∅}, ι = f, t, (10)

be the set of all the indices of those subdomains of the domain Ωι that are not
adjacent to a contact, and let

Ω∗j = ∪[i,ι]∈ϑΩ
ι
i, (11)

where ϑ = {[i, ι] : ∂Ωι
i∩Γc 6= ∅} represents subdomains in unilateral contact. Suppose

that Γ ∩ Γc = ∅. Then for the trace operator γ : [H1(Ωι
i)]

N → [L2(∂Ωι
i)]

N we have

VΓ = γK|Γ = γV |Γ. (12)

Let γ−1 : VΓ → V be an arbitrary linear inverse mapping satisfying

γ−1v = 0 on Γc ∀v ∈ VΓ. (13)

Let us introduce restrictions R
ι

i : VΓ → Γι
i; Lι

i : Lι → Ωι
i; aι

i(., .) : a(., .) → Ωι
i;

V (Ωι
i) : V → Ωι

i and let V 0(Ωι
i) = {v ∈ V | v = 0 on Ω\Ωι

i} be the space of
functions with zero traces on Γι

i. The algorithm is based on the next theorem and
on the use of local and global Schur complements.

Theorem 3.1: A function u is a solution of a global problem (P), if and only if its
trace u = γu|Γ on the interface Γ satisfies the condition

∑

ι=f,t

J(ι)∑
i=1

[aι
i(u

ι
i(u), γ−1w)− Lι

i(γ
−1w)] = 0 ∀w ∈ VΓ,u ∈ VΓ (14)

and its restrictions uι
i(u) ≡ u|Ωι

i
satisfy:

(i) the condition

aι
i(u

ι
i(u), ϕι

i)− Lι
i(ϕ

ι
i) ∀ϕι

i ∈ V 0(Ωι
i), uι

i(u) ∈ V (Ωι
i),

γuι
i(u)|Γι

i
= Rι

iu, i ∈ T ι, ι = f, t,
(15)
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(ii) the condition∑
[i,ι]∈ϑ aι

i(u
ι
i(u), ϕι

i) + jι(uι
i(u) + ϕι

i)− jι(uι
i(u)) ≥

≥ ∑
[i,ι]∈ϑ Lι

i(ϕ
ι
i) ∀ϕ ∈ (ϕι

i, [i, ι] ∈ ϑ), ϕι
i ∈ V 0(Ωι

i),
(16)

and such that

u + ϕ ∈ K, γuι
i(u)|Γι

i
= Rι

iu for [i, ι] ∈ ϑ. (17)

For the proof see [1].

To analyze the condition (14) the local and global Schur complements are
introduced. Let

V ι
i = {γv|Γι

i
| v ∈ K} = {γv|Γι

i
| v ∈ V }

and let us define a particular restriction of the inverse mapping γ−1(.)|Ωι
i
by

Tr−1
iι : V ι

i → V (Ωι
i), γ(Tr−1

iι u)|Γι
i
= uι

i, i = 1, . . . , J(ι), ι = f, t

aι
i(Tr−1

iι uι
i,v

ι
i) = 0 ∀vι

i ∈ V 0
0 (Ωι

i),

T r−1
iι uι

i ∈ V (Ωι
i) for i ∈ T ι, ι = f, t,

(18)

where V 0
0 (Ωι

i) = {v ∈ V0 | v = 0 on Ω\Ωι
i}. For [i, ι] ∈ ϑ we complete the definition

by the boundary condition (13), i.e.

Tr−1
iι uι

i = 0 on Γc. (19)

The local Schur complement for i ∈ T ι is the operator S ι
i : V ι

i → (V ι
i )∗ defined by

〈Sι
iu

ι
i,v

ι
i〉 = aι

i(Tr−1
iι uι

i, T r−1
iι vι

i) ∀uι
i,v

ι
i ∈ V ι

i . (20)

For subdomains which are in contact we define a common local Schur comple-
ment for the union Ωf

i ∪ Ωt
j (where [i, f ] ∈ ϑ, [j, t] ∈ ϑ) as the operator Sft :

(V f
i × V t

j ) → (V f
i × V t

j )∗ = (V f
i )∗ × (V t

j )∗ defined by
〈
Sft(yf

i ,y
t
j), (v

f
i ,v

t
j)

〉
= af

i (u
f
i (y

f
i ), T r−1

if vf
i ) + at

j(u
t
j(y

t
j), T r−1

jt vt
j)

∀(vf
i ,v

t
j) ∈ V f

i × V t
j ,

(21)

where Tr−1
if and Tr−1

jt are defined by means of (18) and (19).
The condition (14) can be expressed by means of local Schur complements in the

form

∑
ι=f,t

∑
i∈T ι

〈S ι
iu

ι
i,v

ι
j

〉
+

∑
ι=f,t

〈
Sft(uf

i ,u
t
j), (v

f
i ,v

t
j)

〉
=

=
∑

ι=f,t

∑J(ι)
i=1 Lι

i(Tr−1
iι vι

i) ∀v ∈ VΓ, [i, f ] ∈ ϑ, [j, t] ∈ ϑ,
(22)

where u = γu|Γ , vι
i = R

ι

iv,uι
i = R

ι

iu. Then we will solve the equation (22) on the
interface Γ in the dual space (VΓ)∗. We rewrite (22) into the following form

S0U+SCONU = F, (23)
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where
S0 =

∑
ι=f,t

∑
i∈T ι(R

ι

i)
TS ι

iR
ι

i,

SCON =
∑

ι=f,t R
T

ftSftRft,

F =
∑

ι=f,t

∑J(ι)
i=1 (R

ι

i)
T (Tr−1

iι )TS ι
i

(24)

and Rft(u) = (R
f

i (u), R
t

j(u))T ,u ∈ VΓ, [i, f ] ∈ ϑ, [j, t] ∈ ϑ. Equation (23) will be
solved by successive approximations, because the operators Sft and therefore

SCON are nonlinear. As an initial approximation U
0

we choose the solution of the
global primal problem, where the boundary conditions on Γc are replaced by the
linear bilateral conditions with gft ≡ 0 (i.e. j(u) ≡ 0)

uf
n − ut

n = 0, τ ft
t = 0 on Γc. (25)

Then we replace the set K by K0 = {v ∈ V | vf
n − vt

n = 0 on Γc} and solve the
following problem

u0 = arg minv∈K0 L(v) (26)

where L(v) = 1
2
a(v,v)− L(v). We set U

0
= γu0|Γ to get an initial approximation.

The auxiliary problem (26) represents a linear elliptic boundary value problem with
bilateral contact and it can be solved by the domain decomposition method again.

The non-linear equation (23) is solved by successive approximations. We assume

that the approximation U
k−1

is known, and we find the next approximation U
k
as

the solution of the following linear problem

S0U
k

= F− SCONU
k−1

, k = 1, 2, . . . (27)

In [1] the convergence of the successive approximation (27) to the solution of the
original problem (23) is proved in the space (VΓ)∗.

Problems (26) and (27) are solved by the finite element method.

4. Discussion of numerical results

The model of the knee joint replacement was derived from the X-ray image after
application the total knee prosthesis. The paper presents three models. Differences
are given by varied angle between the vertical axis and axis of the femur. The values
are 3 degree in model (a), 5 degree in model (b) and 7 degree in model (c). All
models are presented in Fig. 1.

In the model the material parameters are as follows: Bone: Young’s modulus
E = 1.71×1010 [Pa], Poisson’s ratio ν = 0.25, (M1) Ti6Al4V : E = 1.15×1011 [Pa],
ν = 0.3, (M2) Chirulen: E = 3.4×108 [Pa], ν = 0.4, (M3) CoCrMo: E = 2.08×1011

[Pa], ν = 0.3. The femur is loaded between points 5 and 6 by 0.215× 107[Pa]. The
tibia is fixed between points 1 and 2, the fibula is fixed between points 3 and 4.
The unilateral contact boundary is supposed between points 7 and 8 as well as
between 9 and 10. The domain is decomposed into 13 subdomains. The discretization
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Fig. 1: The models.
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Fig. 2: The vertical stress tensor component.

comprises 3800 nodes, 7200 elements, 62 unilateral contact nodes and 350 interface
elements. The loadings evoked by muscular forces were neglected. For each model,
we obtain solution (with accuracy 10−6) after 19 iterations of the PCG algorithm
for the auxiliary problem and 14 iterations of the successive approximations method
with total 36 iterations of the PCG algorithm for the original problem. In Fig. 2 the
vertical stress tensor components for the frontal cross-section are presented, while
in Figs 3 a,b,c the principal stresses are presented. The presented graphical results
represent distribution of stresses in the femur, in the total prosthesis and in the tibia
as well as in the fibula.

The obtained numerical results correspond to the stress fields in the bones and in
the knee prosthesis observed in orthopaedic practice. The presented models facilitate
to comparison of the prostheses made from different materials as the CoCrMo alloy,
the Al2O3 and ZrO2 ceramics. The aim of the mathematical modelling of the knee
prosthesis is to determine the best version of the knee prosthesis.
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Fig. 3: The principal stresses (→← represents compression and ←→ extension).
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