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ROBUST PRECONDITIONERS FOR THE MATRIX FREE
TRUNCATED NEWTON METHOD∗

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

Abstract

New positive definite preconditioners for the matrix free truncated Newton method
are given. Corresponding algorithms are described in detail. Results of numerical
experiments that confirm the efficiency and robustness of the preconditioned truncated
Newton method are reported.

1 Introduction

We consider the unconstrained minimization problem

x∗ = argminx∈Rn F (x), F ∈ C2 : Rn → R, n− large

and use the notation

g(x) = ∇F (x), G(x) = ∇2F (x),

‖G(x)‖ ≤ G, ∀x ∈ Rn.

Numerical methods for unconstrained minimization are iterative and their iteration
step has the form

xk+1 = xk + αksk, k ∈ N,

where sk is a direction vector and αk is a step-length. In this contribution, we will
deal with the Newton method, which uses the quadratic model

F (xk + s) ≈ Q(xk + s) = F (xk) + gT (xk)s+
1

2
sTG(xk)s

for direction determination in such a way that

sk = arg min
s∈Mk

Q(xk + s).

There are two basic possibilities for direction determination: the line-search method,
where

Mk = Rn,

and the trust-region method, where

∗This work was supported by the Czech Science Foundation, project No. 201/09/1957, and the
institutional research plan No. AV0Z10300504.
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Mk = {s ∈ Rn : ‖s‖ ≤ ∆k}
(here ∆k > 0 is the trust region radius). We suppose that matrix G = G(x) and its
structure are not explicitly known. The direction vector (a minimum of a quadratic
function) is in this case computed iteratively by the preconditioned conjugate gra-
dient (PCG) method with preconditioner C. The outer index k is for the sake of
simplicity mostly omitted.

Algorithm 1 Direction determination by the PCG method (the line-search method).
Data: Relative precision 0 ≤ ω < 1.

s1 = 0, g1 = g, h1 = C−1g1, ρ1 = gT1 h1, p1 = −h1.

Do i = 1 to m

qi = Gpi, σi = pTi qi.

If σi ≤ 0 then s = si, stop.

αi = ρi/σi, si+1 = si + αipi, gi+1 = gi + αiqi,

hi+1 = C−1gi+1, ρi+1 = gTi+1hi+1.

If ‖gi+1‖ ≤ ω‖g1‖ or i = m then s = si, stop.

βi = ρi+1/ρi, pi+1 = −hi+1 + βipi.

End do

Algorithm 2 Direction determination by the PCG method (the trust-region method)
Data: Relative precision 0 ≤ ω < 1, trust region radius ∆ > 0.

s1 = 0, g1 = g, h1 = C−1g1, ρ1 = gT1 h1, p1 = −h1.

Do i = 1 to m

qi = Gpi, σi = pTi qi.

If σi ≤ 0 then s = si + λipi, λi > 0, ‖si + λipi‖ = ∆, stop.

αi = ρi/σi.

If ‖si + αipi‖ ≥ ∆ then s = si + λipi, λi > 0, ‖si + λipi‖ = ∆, stop.

si+1 = si + αipi, gi+1 = gi + αiqi,

hi+1 = C−1gi+1, ρi+1 = gTi+1hi+1.

If ‖gi+1‖ ≤ ω‖g1‖ or i = m then s = si, stop.

βi = ρi+1/ρi, pi+1 = −hi+1 + βipi.

End do

Since matrix G is not given explicitly, we use numerical differentiation instead of
matrix multiplication. Thus the product q = Gp is replaced by the difference

G(x)p ≈ g(x+ δp)− g(x)

δ
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where δ = ε/‖p‖ (usually ε =
√
εM and εM is a machine precision). The following

theorems are proved in [4], Section 8.4.

Theorem 1 Let function F ∈ C2 : Rn → R have Lipschitz continuous second order
derivatives (with a constant L). Let q = G(x)p and

q̃ =
g(x+ δp)− g(x)

δ
, δ =

ε

‖p‖ .

Then it holds

‖q̃ − q‖ ≤ 1

2
εL‖p‖.

Theorem 2 Consider the conjugate gradient method applied to the system of linear
equations G(x)s + g = 0, where the vectors qi = G(x)pi are replaced by the vectors
q̃i = (g(x+ δipi)− g(x))/δi, δi = ε/‖pi‖. Suppose that the assumptions of Theorem 1
are satisfied and denote

sm+1 = s1 +
m∑

i=1

αipi, gm+1 = g1 +
m∑

i=1

αiqi, g̃m+1 = g1 +
m∑

i=1

αiq̃i

(thus gm+1 = g +G(x)sm+1 if the computation is exact). Then it holds

‖g̃m+1 − gm+1‖ ≤ ϑ‖sm+1‖, ϑ =
m

2
εL.

Remark 1 Assume that ‖g̃m+1‖ ≤ ω‖g‖, 0 < ω < 1, in the m-th step of the
conjugate gradient method. If we set s = sm+1 and g̃ = g̃m+1, then we can write

‖G̃s+ g‖
‖g‖ ≤ ω,

‖(G̃−G)s‖
‖s‖ ≤ ϑ,

see Theorem 2, where G̃ is a symmetric matrix for which it holds G̃s + g = g̃
and ϑ = mεL/2. These expressions allow us to estimate the asymptotic rate of
convergence.

A disadvantage of the difference version of the truncated Newton method consists
in the fact that it requires a large number of inner iterations (i.e. a large number of
gradient evaluations) if matrix G = G(x) is ill-conditioned. Therefore, the conjugate
gradient method must be suitably preconditioned. Standard approaches cannot be
used because matrix G is unknown. The following possibilities will be studied:

• Preconditioning based on the limited memory BFGS (Broyden, Fletcher, Gold-
farb, Shanno) method.

• Band preconditioners obtained by the standard BFGS method equivalent to
the preconditioned conjugate gradient method.

• Band preconditioners obtained by numerical differentiation.

• Tridiagonal preconditioners determined by the Lanczos method equivalent to
the unpreconditioned conjugate gradient method.
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2 Preconditioning based on the limited memory BFGS method

The idea of limited memory preconditioners is very simple (see [7]). Matrix
C−1

k = Hk = Hk
k , used as a preconditioner in the k-th step of the Newton method,

is determined recurrently in such a way that Hk
k−l = γk−lI where l is the number of

updates (usually l = 3) and

Hk
j+1 = Hk

j +

(
yTj H

k
j yj

yTj dj
+ 1

)
djd

T
j

yTj dj
− Hk

j yjd
T
j + dj(H

k
j yj)

T

yTj dj

= V T
j Hk

j Vj +
djd

T
j

yTj dj

for k − l ≤ j ≤ k − 1 with

Vj = I − yjd
T
j

yTj dj
, dj = xj+1 − xj, yj = gj+1 − gj.

Matrix Hk is not computed explicitly. In the i-th inner step of the conjugate gradient
method used in the k-th outer step of the Newton method, a vector hi = C−1

k gi =
Hk gi is determined by the Strang recurrences [6]. First, we set uk = gi and compute
numbers and vectors

σj =
dTj uj+1

yTj dj
and uj = uj+1 − σjyj, k − l ≤ j ≤ k − 1,

respectively, using backward recurrences. Then we set vk−l = γk−luk−l and compute
vectors

vj+1 = vj +

(
σj −

yTj vj

yTj dj

)
dj, k − l ≤ j ≤ k − 1,

using forward recurrence. Finally, we set hi = vk.

3 Band preconditioners obtained by the standard BFGS method

The BFGS method with perfect line search applied to a strictly convex quadratic
function (with matrixG in the quadratic term) is equivalent to the conjugate gradient
method with the same step-length choice. The BFGS method generates a sequence
of matrices Bi, 1 ≤ i ≤ m, in such a way that B1 = C and

Bi+1 = Bi +
yiy

T
i

dTi yi
− Bidi(Bidi)

T

dTi Bidi
= Bi +

Gpi(Gpi)
T

pTi Gpi
+

gig
T
i

pTi gi

for 1 ≤ i ≤ m, where di = si+1 − si = αipi and yi = gi+1 − gi = Gdi. Vectors pi
and gi are byproducts of the conjugate gradient method. If we use vectors q̃i (given
by numerical differentiation) and g̃i instead of vectors qi = Gpi and gi, respectively,
we can write B1 = C and

Bi+1 = Bi +
q̃iq̃

T
i

pTi q̃i
+

g̃ig̃
T
i

pTi g̃i
, 1 ≤ i ≤ m.
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From the above formulation, it is evident that only vectors generated by the precondi-
tioned conjugate gradient method (with matrix multiplication replaced by numerical
differentiation) are used for determination of matrices Bi, 1 ≤ i ≤ m. These matrices
do not occur in correction terms, so we can save only their selected parts (see [8]).
If the vectors q̃i and g̃i are good approximations of the vectors qi and gi, then the
matrices Bi, 1 ≤ i ≤ m, are positive definite. Further, if the number of steps of
the conjugate gradient method is sufficiently large, the matrix B = Bm+1 is a good
approximation of matrix G so we can use it (or its part) as a preconditioner in the
next step of the Newton method. We will investigate three special cases.

3.1 Diagonal preconditioning

If C = D, where D is a diagonal matrix containing diagonal elements of B,
no problem arises because positive definite matrix B has positive numbers on the
main diagonal. Diagonal preconditioning for problems with sparse Hessian matrices
justifies the following theorem proved in [3].

Theorem 3 Let Dn be the set of all diagonal matrices of order n and let D be
a diagonal matrix containing diagonal elements of matrix G. Then it holds

κ(GD−1) ≤ l min
M∈Dn

κ(GM−1)

where κ is a spectral condition number and l is a maximal number of nonzero elements
in rows of matrix G (l = 5 for pentadiagonal matrix G).

3.2 Tridiagonal preconditioning

Let now C = T where T is a tridiagonal matrix containing elements of three
main diagonals of matrix B. In this case the matrix C need not be positive definite
(even if B was positive definite). Consider, as an example, matrices

B =




2 −2 2
−2 3 −3
2 −3 4


 , T =




2 −2 0
−2 3 −3
0 −3 4


 .

Both these matrices have positive elements on the main diagonal and positive main
subdeterminants of the second order. But it holds that detB = 2 and detT = −10
so T is not positive definite, although B is positive definite. In order to remove this
drawback, we have to modify matrix T to be positive definite.

Lemma 1 Consider a tridiagonal matrix

T =




α1 β1 . . . 0 0
β1 α2 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . αn−1 βn−1

0 0 . . . βn−1 αn



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(elements αi have differrent meaning than step-sizes αi used in previous sections)
and denote ∆i a main subdeterminant of the i-th order of matrix T containing rows
and columns with indexes 1, 2, . . . , i). Then it holds ∆1 = α1 and

∆i = αi∆i−1 − β2
i−1∆i−2, 2 ≤ i ≤ n,

where ∆0 = 1.

This well-known lemma can be used in the proof of the next theorem (see [1], [4]).

Theorem 4 A tridiagonal matrix T is positive definite if and only if γi > 0 for
1 ≤ i ≤ n, where γ1 = α1 and

γi = αi − β2
i−1

γi−1

, 2 ≤ i ≤ n.

Theorem 4 can be utilized in such a way that we compute numbers γi, 1 < i ≤ n,
and as soon as γi ≤ 0 for some index i, we decrease the off-diagonal element βi−1

so that β2
i−1 < γi−1αi (e.g. we set β2

i−1 = λi−1γi−1αi, where 0 < λi−1 < 1). The
trouble is that if we choose λi−1 unsuitably, the resulting tridiagonal matrix can be
ill-conditioned. For practical purposes it is more convenient to use the following
theorem and its corollary (see [4]), Section 8.4.

Theorem 5 Consider a tridiagonal matrix T with positive numbers on the main
diagonal. If matrices

[
2α1 2β1

2β1 α2

]
,

[
αi 2βi

2βi αi+1

]
,

[
αn−1 2βn−1

2βn−1 2αn

]
,

where 2 ≤ i < n − 2, are positive semidefinite and at least one of them is positive
definite, then matrix T is positive definite.

Corollary 1 Let a tridiagonal matrix T contain the main diagonal and halves of
subdiagonals of the positive definite matrix B (thus αi = bi,i, 1 ≤ i ≤ n, and βi =
bi,i+1/2, 1 ≤ i ≤ n− 1). Then T is positive definite.

Corollary 1 can be utilized so that the subdiagonal elements of matrix B are divided
by two. Thereafter, the resulting tridiagonal matrix is positive definite. Theorem 5
can be utilized so that we compute determinants αiαi+1 − 4β2

i , 1 ≤ i ≤ n − 1, and
as soon as αiαi+1 − 4β2

i < 0 holds for some index i, we decrease the subdiagonal
element βi so that β2

i = αiαi+1/4.
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3.3 Pentadiagonal preconditioning

Assertions of Theorem 5 and Corollary 1 can also be generalized for an arbitrary
band matrix. We will show the corresponding procedure in case of the following
pentadiagonal matrix

P =




α1 β1 γ1 . . . 0 0 0
β1 α2 β2 . . . 0 0 0
γ1 β2 α3 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . αn−2 βn−2 γn−2

0 0 0 . . . βn−2 αn−1 βn−1

0 0 0 . . . γn−2 βn−1 αn




on which we will often refer. The following theorem and its corollary are proved
in [4], Section 8.4.

Theorem 6 Consider a pentadiagonal matrix P with positive elements on the main
diagonal. If matrices




αi (3/2)βi 3γi
(3/2)βi αi+1 (3/2)βi+1

3γi (3/2)βi+1 αi+2


 , 1 ≤ i < n− 2,

are positive semidefinite, then matrix P is positive definite.

Corollary 2 Let a pentadiagonal matrix P contain the main diagonal, two thirds of
subdiagonals, and one third of subsubdiagonals of a positive definite matrix B (thus
αi = bi,i, 1 ≤ i ≤ n, βi = 2bi,i+1/3, 1 ≤ i ≤ n− 1, and γi = bi,i+2/3, 1 ≤ i ≤ n− 2).
Then P is positive definite.

Corollary 2 can be utilized so that we take two thirds of subdiagonal elements and
one third of subsubdiagonal elements of matrix B. Thereafter, the resulting penta-
diagonal matrix is positive definite. Theorem 6 can be utilized so that we first
compute subdeterminants αiαi+1 − (9/4)β2

i , 1 ≤ i ≤ n − 1, and as soon as one of
them is negative, we decrease the subdiagonal element βi so that β2

i = (4/9)αiαi+1.
Finally, we compute the determinants of the matrices mentioned in Theorem 6 as
long as they are nonnegative. If one of them is negative, the corresponding element γi
is modified using the following theorem is proved in [4], Section 8.4.

Theorem 7 Determinants ∆i of the matrices mentioned in Theorem 6 can be com-
puted according to the formula

∆i = αi+1

(
αiαi+2 − 9γ2

i

)
− 9

4

(
αiβ

2
i+1 + αi+2β

2
i − 6βiβi+1γi

)
.

The determinant ∆i is nonnegative if and only if γ
i
≤ γi ≤ γi where
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γ
i

=
1

3αi+1

(
9

4
βiβi+1 −

√
Di

)
,

γi =
1

3αi+1

(
9

4
βiβi+1 +

√
Di

)

are the roots of the quadratic equation ∆i = 0 and

Di =
(
αiαi+1 − 9

4
β2
i

)(
αi+1αi+2 − 9

4
β2
i+1

)

is the discriminant, divided by 36, of this equation, which is nonnegative provided
that both multipliers are nonnegative.

Remark 2 Theorem 7 offers two possibilities how to choose a new element γi in
case that ∆i < 0. If γi < γ

i
, we set γi := γ

i
. If γi > γi, we set γi := γi. However,

more advantageous is to set

γi =
1

2
(γ

i
+ γi) =

3

4

βiβi+1

αi+1

,

because this choice is computationally simpler and gives better practical results.

4 Band preconditioners obtained by numerical differentiation

Suppose that the Hessian matrix has a band structure (even if it was not true
in fact). The elements of this fictitious matrix that will be used as a preconditioner
can be determined by numerical differentiation. It is performed only once at the
beginning of the outer step of the Newton method.

In order to determine all elements of a band matrix which has k − 1 couples of
subdiagonals (thus k = (l+1)/2 where l is a band width), it suffices to use k gradient
differences, which means to compute k extra gradients during each outer step of the
Newton method. We will investigate three special cases again.

4.1 Diagonal preconditioning

Remark 3 Assume that the Hessian matrix is diagonal. Then all its elements can
be approximated using one gradient difference

G(x)v ≈ g(x+ v)− g(x), v = [δ1, . . . , δn]
T ,

where δ1, . . . , δn are suitable differences. Diagonal matrix C = D = diag(α1, . . . , αn)
where Dv = g(x + v)− g(x) is then used as a preconditioner. After substitution we
obtain αiδi = gi(x+ v)− gi(x) or

αi =
gi(x+ v)− gi(x)

δi
, 1 ≤ i ≤ n.
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Remark 4 The differences can be chosen in two different ways:

(1) We set δi = δ, 1 ≤ i ≤ n, so v = δe, where e is a vector with all elements equal

to one. We can choose (similarly as in Theorem 1) δ =
√
εM/‖e‖ =

√
εM/n.

(2) We set δi =
√
εM max(|xi|, 1), 1 ≤ i ≤ n. This choice is less sensitive to rounding

errors.

In both cases we can write δi = εδi, 1 ≤ i ≤ n, where ε =
√
εM and either δi = 1/

√
n

or δi = max(|xi|, 1) for 1 ≤ i ≤ n.

A disadvantage of preconditioners based on numerical differentiation is the fact
that they need not be positive definite. Consider a strictly convex quadratic function
F : R2 → R:

F (x) =
1

2
xT

[
1 −2

−2 6

]
x, g(x) =

[
1 −2

−2 6

]
x.

Then it holds

g(x+ δe)− g(x)

δ
=

[
1 −2

−2 6

] [
1
1

]
=

[
−1
4

]
,

thus

De =

[
α1 0
0 α2

] [
1
1

]
=

[
−1
4

]
,

which gives α1 = −1, α2 = 4, and so matrix D is not positive definite. This drawback
can be removed by setting

αi =
|gi(x+ v)− gi(x)|

δi
, 1 ≤ i ≤ n.

This modification is justified by the following theorem proved in [10].

Theorem 8 Let Dn be the set of all diagonal matrices of order n and let D =
diag(α1, . . . , αn) be a diagonal matrix such that

αi =
n∑

j=1

|Gij|, 1 ≤ j ≤ n,

where Gij, 1 ≤ j ≤ n, are the elements of the i-th row of matrix G. Then it holds

κ1(GD−1) = min
M∈Dn

κ1(GM−1),

where κ1 is an l1 condition number (the product of l1 norms of a matrix and its
inverse).
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If matrix G has only positive numbers and if we set v = δe, we can write De =
(g(x+ δe)− g(x))/δ ≈ Ge, so

αi ≈
n∑

j=1

Gij =
n∑

j=1

|Gij|

and matrix D is according to Theorem 8 an ideal preconditioner (in l1 norm) for the
system of equations Gs+g = 0. If matrix G does not contain only positive numbers,
it holds

|αi| ≈
∣∣∣∣∣∣

n∑

j=1

Gij

∣∣∣∣∣∣
≤

n∑

j=1

|Gij|,

so the elements of modified matrix D form the lower bound for the elements of an
ideal preconditioner.

4.2 Tridiagonal preconditioning

Theorem 9 Let the Hesian matrix of function F be tridiagonal (as matrix T ). Set
v1 = [δ1, 0, δ3, 0, δ5, 0, . . .], v2 = [0, δ2, 0, δ4, 0, δ6, . . .], where δi = εδi, 1 ≤ i ≤ n. Then
for 1 < i < n it holds

α1 = lim
ε→0

g1(x+ v1)− g1(x)

δ1
, β1 = lim

ε→0

g1(x+ v2)− g1(x)

δ2
,

αi = lim
ε→0

gi(x+ v1)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v2)− gi(x)− δi−1βi−1

δi+1
, mod(i, 2) = 1,

αi = lim
ε→0

gi(x+ v2)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v1)− gi(x)− δi−1βi−1

δi+1
, mod(i, 2) = 0,

αn = lim
ε→0

gn(x+ v1)− gn(x)

δn
, mod(n, 2) = 1,

αn = lim
ε→0

gn(x+ v2)− gn(x)

δn
, mod(n, 2) = 0.

Remark 5 Theorem 9, proved in [4], Section 8.4, gives us the way how to construct
a tridiagonal preconditioner. A fixed number ε is chosen (e.g. ε =

√
εM) and the ele-

ments of matrix C = T are computed according to formulas mentioned in Theorem 9
(in which the limit is omitted).

Matrix C = T obtained by Remark 5 need not be positive definite even if the
Hessian matrix was positive definite. Tridiagonal matrix T obtained by application
of Theorem 9 (with δi = δ, 1 ≤ i ≤ n) to a strictly convex quadratic function of
three variables with the positive definite Hessian matrix

G =




1 −1 −2
−1 4 −1
−2 −1 8



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can serve as an example. We will state two theorems supporting a choice of tridi-
agonal preconditioning in cases when the actual Hessian matrix is pentadiagonal
(see [4]).

Theorem 10 Let the Hessian matrix G(x) be pentadiagonal, positive definite, and
diagonally dominant. Then, if δi = εδ, 1 ≤ i ≤ n, and if the number ε is suffi-
ciently small, matrix C = T obtained by Remark 5 is positive definite and diagonally
dominant.

Remark 6 Theorem 10, proved in [4], Section 8.4, requires all differences to be

equal, which is fulfilled for instance when δi =
√
2εM/n, 1 ≤ i ≤ n. But the numerical

experiments show that the choice δi =
√
εmax(|xi|, 1), 1 ≤ i ≤ n, is usually more

advantageous.

Matrix T is positive definite for a lot of practical problems. Consider a boundary
value problem for the second order ordinary differential equation

y′′(t) = ϕ(y(t)), 0 ≤ t ≤ 1, y(0) = y0, y(1) = y1,

where function ϕ : R → R is twice continuously differentiable. If we divide the
interval [0, 1] onto n+1 parts using nodes ti = ih, 0 ≤ i ≤ n+1, where h = 1/(n+1)
is the step-size and if we replace the second order derivatives in nodes with differences

y′′(ti) =
y(ti−1)− 2y(ti) + y(ti+1)

h2
, 1 ≤ i ≤ n,

we will obtain a system of n nonlinear equations

h2ϕ(xi) + 2xi − xi−1 − xi+1 = 0,

where xi = y(ti), 0 ≤ 1 ≤ n + 1, so x0 = y0 and xn+1 = y1. If we solve this system
by the least squares method, the minimized function has the form

F (x) =
1

2

n∑

i=1

f 2
i (x) =

1

2

n∑

i=1

(
h2ϕ(xi) + 2xi − xi−1 − xi+1

)2
,

where x = [x1, . . . , xn]
T . The following theorem is proved in [4], Section 8.4.

Theorem 11 Let the difference version of the Newton method be applied to the sum
of squares given above with a linear function ϕ : R → R. Then, if δi = εδ, 1 ≤ i ≤ n,
and if the number ε is sufficiently small, matrix C = T obtained by Remark 5 is
positive definite.

4.3 Pentadiagonal preconditioning

Theorem 12 Let the Hessian matrix of function F be pentadiagonal (as matrix P ).
Set v1 = [δ1, 0, 0, δ4, 0, 0, . . .], v2 = [0, δ2, 0, 0, δ5, 0, . . .], v3 = [0, 0, δ3, 0, 0, δ6, . . .],
where δi = εδi, 1 ≤ i ≤ n. Then it holds
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αi = lim
ε→0

gi(x+ v1)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v2)− gi(x)− δi−2γi−2

δi+1
,

γi = lim
ε→0

gi(x+ v3)− gi(x)− δi−1βi−1

δi+2
, mod(i, 3) = 1,

αi = lim
ε→0

gi(x+ v2)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v3)− gi(x)− δi−2γi−2

δi+1
,

γi = lim
ε→0

gi(x+ v1)− gi(x)− δi−1βi−1

δi+2
, mod(i, 3) = 2,

αi = lim
ε→0

gi(x+ v3)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v1)− gi(x)− δi−2γi−2

δi+1
,

γi = lim
ε→0

gi(x+ v2)− gi(x)− δi−1βi−1

δi+2
, mod(i, 3) = 0,

This theorem is proved in [4], Section 8.4.

5 Tridiagonal preconditioners determined by the Lanczos method

The elements of a tridiagonal matrix T obtained by the Lanczos method can be
determined from the coefficients of the conjugate gradient method (which will be
denoted with a tilde) by transformations α1 = 1/α̃1 and

β2
i =

β̃i

α̃2
i

, αi+1 =
β̃i

α̃i

+
1

α̃i+1

, 1 ≤ i ≤ m,

where m is the number such that α̃i > 0 for 1 ≤ i ≤ m. The following theorems are
proved in [4], Section 8.4.

Theorem 13 Consider the conjugate gradient method (applied to the quadratic func-
tion with the Hessian matrix G) such that α̃i > 0 for 1 ≤ i ≤ m. Then the tridiagonal
matrix Tm of order m with the elements given by the above transformations is positive
definite.

Remark 7 The tridiagonal matrix Tm has the dimension m ≤ n. In order to obtain
a preconditioner with the dimension n, we set

C = [Qm, Qn−m]

[
Tm 0
0 In−m

]
[Qm, Qn−m]

T = (I −QmQ
T
m) +QmTmQ

T
m

where Qm is a matrix with m orthonormal columns obtained with the symmetric
Lanczos process and Qn−m is a matrix with n − m orthonormal columns such that
matrix [Qm, Qn−m] is square and orthogonal.

Theorem 14 Let the assumptions of Theorem 13 be fulfilled. Then the precondi-
tioner mentioned in Remark 7 is positive definite and it holds

C−1 = (I −QmQ
T
m) +QmT

−1
m QT

m.
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6 Rejecting of preconditioners

It is important to be able to decide whether the preconditioner will be used or
rejected. Indefinite preconditioner is inappropriate also in case the Hessian matrix
is not positive definite.

The Gill-Murray decomposition, proposed in [2], is a suitable means for testing
positive definiteness and ill-conditioning of a matrix. If a pivot is during the elimina-
tion step less than δmax(1,max1≤i≤n(|αi|)), where δ is a prescribed bound, then the
decomposition of a preconditioner is terminated and the preconditioner is rejected.
It is not worth performing the whole Gill-Murray decomposition and using the ob-
tained positive definite matrix as a preconditioner (numerical experiments prove this
claim). The number δ is usually chosen such that δ = 10−12. Sometimes, however,
we have to choose a larger value (e.g. δ = 10−2).

7 Concluding remarks

• Preconditioning based on the limited memory BFGS method does not require
any corrections. It is rather robust, but not very efficient.

• Band preconditioners obtained by the standard BFGS method have to be mod-
ified in advance, otherwise they are mostly rejected during the decomposition.
Modifications based on Theorem 5, when the subdiagonal elements are de-
creased in order negative subdeterminants were zero, have proved to be very
successful. It is shown that it is necessary to reject the preconditioners obtained
in this way more often (e.g. to choose δ = 10−2).

• Band preconditioners obtained by numerical differentiation can be modified in
a simple way that the diagonal elements are replaced with their absolute values.
It suffices to choose δ = 10−12 for rejecting (except for diagonal preconditioners
which are more prone to rejecting).

• It is not necessary to modify tridiagonal preconditioners determined by the
Lanczos method (they are positive definite by Theorem 14). However, they
can be determined only in unpreconditioned steps of the Newton method. This
causes a lot of technical difficulties (the iteration process of the conjugate gra-
dient method have to be modified).

8 Numerical comparison

The difference versions of the Newton method which use various precondition-
ers were tested using a set of 71 test problems with 1000 variables. The results
are reported in the table containing the following data: NIT – the total number of
iterations, NFV – the total number of function evaluations, NFG – the total number
of gradient evaluations, NCG – the total number of inner iterations, NCN – the total
number of preconditioned outer iterations, NCP – the total number of problems with
enlarged bound for rejecting, Time – the total computational time.
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The methods tested: TN – the unpreconditioned Newton method, TNLM – pre-
conditioning using the limited memory BFGS method, TNVM – band preconditioning
using the standard BFGS method (1 – diagonal, 2 – tridiagonal, 3 – pentadiagonal),
TNND – band preconditioning using numerical differentiation (1 – diagonal, 2 – tridi-
agonal, 3 – pentadiagonal), TNLT – tridiagonal preconditioning using the Lanczos
method, LMVM – the limited memory BFGS method, CG – the nonlinear conjugate
gradient method. Methods LMVM and CG are mentioned only for comparison (they
have nothing in common with the Newton method studied in this contribution).

Method NIT NFV NFG NCG NCN NCP Time

TN 7425 11827 372789 359505 - - 66.08
TNLM 7270 12521 233269 219347 7270 - 42.55

TNVM-1 7095 10303 274344 262855 4335 37 50.43
TNVM-2 6751 9252 139989 129933 4260 37 27.47
TNVM-3 6803 8857 229501 219820 4027 36 51.67
TNND-1 6522 8491 347384 331709 3857 40 59.51
TNND-2 7573 11245 147391 119434 4409 3 25.45
TNND-3 7107 10726 125262 91665 4943 4 24.57
TNLT 7398 11672 352199 339081 6808 1 55.61

LMVM 121314 127189 127189 - - - 39.59
CG 109166 325994 325994 - - - 75.72

From the results reported in this table, we can deduce several conclusions:

• The difference versions of the Newton method converge very fast, but they
require more gradient computations.

• The unpreconditioned Newton method is not competitive with the limited
memory BFGS method.

• Diagonal preconditioners and preconditioners obtained by the Lanczos method
are not too efficient.

• Band preconditioners obtained by the standard BFGS method have to be often
modified. Moreover, the bound for rejecting has to be often increased.

• Band preconditioners given by numerical differentiation rarely require correc-
tions. The Newton method modified in this way is more efficient than the
limited memory BFGS method.
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