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INTRODUCTION TO ALGORITHMS
FOR MOLECULAR SIMULATIONS

Martin Kramář

Abstract

In the first part of the paper we survey some algorithms which describe time
evolution of interacting particles in a bounded domain. Applications to macroscale
as well as microscale are presented on two examples: motion of planets and collision
of two bodies. In the second part of the paper we present solution to stationary
Schrödinger equation for simple molecular models.

1 Algorithm for dynamic simulation

We consider a system of n particles, which are determined by their weights
{m1, . . . ,mn}, positions {x1, . . . ,xn} and velocities {v1, . . . ,vn}. We assume the
following computational domain: Ω = [0, L1]× [0, L2] or Ω = [0, L1]× [0, L2]× [0, L3]
in two or three dimensions, respectively. Further we assume that particles that
left Ω do not interact any longer with those in Ω. The time evolution is described
by Newton’s equation of motion miv̇i = Fi or miẍi = Fi, i = 1, . . . , n [1].

1.1 Velocity-Störmer-Verlet method

We consider the time interval [0, tend] to be discretized into subintervals with
the step δt so that Newton’s equation of motion are replaced with an algebraic
system at n · δt where n = 1, · · · , ntend

, while using the second central difference[
d2x
dt2

]
n
=

1

δt2
(x(tn+1)−2x(tn)+x(tn−1)). This leads to the so-called velocity Störmer-

Verlet method

xn+1
i = xn

i + δtvn
i + Fn

i · δt2/(2mi), (1)

vn+1
i = vn

i + (Fn
i + Fn+1

i )δt/(2mi). (2)

where we denote the positions by xn
i = xi(tn) and analogously Fn

i and vn
i stand for

forces and velocities, respectively.

We consider the gravitational force Fi =
∑n

j=1,j 6=iFij where Fij =
mimj

r3ij
rij. The

method is demonstrated on a simplified 2-dimensional model, which consists of the
Sun, the Earth, the Jupiter, and Halley’s Comet. Figure 1 shows the resulting orbits
and initial data.
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msun = 1 x0
sun = (0, 0) v0

sun = (0, 0)
mEarth = 3 · 10−6 x0

Earth = (0, 1) v0
Earth = (−1, 0)

mJupiter = 9.55 · 10−4 x0
Jupiter = (0, 5.36) v0

Jupiter = (−0.425, 0)
mHalley = 1 · 10−14 x0

Halley = (34.75, 0) v0
Halley = (0, 0.0296)

δt = 0.015 tend = 468.5

Fig. 1: Trajectories of Halley’s Comet, the Sun, the Earth and Jupiter. In this model are
all masses divided by the mass of the Sun, all distances are divided by the dES (distance
from the Earth to the Sun) and all velocities are divided by the vE (velocity of the Earth).
It means that the time is divided by dES/vE.

1.2 Cutoff radius

Calculation of forces is very time consuming for system with thousands and more
mutually interacting particles. We shall accelerate the computation by considering
only interactions of particles in a given neighbourhood by which we reduce the com-
plexity from O(n2) to O(n).
As a model, we choose the Lennard-Jones potential [1]

U(rij) = 4 · ε
(

σ

rij

)6

·
((

σ

rij

)6

− 1

)
, (3)

where σ > 0 is the distance, at which the force switches between repulsive and
attractive and ε is depth of the potential.

The approximation of the potential function for n particles is truncated double
sum

V (x1, . . . ,vn) =
n∑

i=1

n∑
j:0<rij≤rcut

U(rij), (4)

and the approximation of the corresponding force Fi on the particle i is given by

Fi = −∇xi
V (x1, . . . ,xn) = 24 · ε ·

n∑
0<rij≤rcut

1

r2ij

(
σ

rij

)6

·
(
1− 2 ·

(
σ

rij

)6
)
rij. (5)

where rcut is chosen 2.5 · σ typically [1].
The algorithm was applied to a problem of collision of two bodies which are

created from 10 × 10 and 30× 10 particles of equal mass, respectively, arranged on
a lattice of mesh size 21/6 · σ. For the initial data and numerical simulation we refer
to Figure 2.
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L1 = 50 ε = 5 v = (0,−10) N1 = 100 rcut = 2.5σ
L2 = 50 σ = 1 m = 1 N2 = 300 δt = 0.00005
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Fig. 2: Collision of two bodies. Time evolution of the distribution of the particles.

2 Time indenpendent Schrödinger equation

Consider a single particle. Schrödinger wave function Ψ(x, y, z) is quantity which
describes state of the particle. It is related to the probability ρ(x, y, z) that a particle
is at a given position by ρ = Ψ∗ · Ψ where Ψ∗ is complex conjugate to function Ψ.
The Schrödinger equation reads as follows: HΨ = EΨ with the Hamilton operator

H = − h2

8π2m

d2

dx2
+ V(x), (6)

where V(x) is operator of the potential energy, m is mass of the particle and h is the
Planck constant. After adjustment we can write the Schrödinger wave equation in
the form

d2Ψ

dx2
+

8π2m

h2
(E − V)Ψ = 0. (7)
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2.1 Particle in the potential well

We consider a particle moving inside one-dimensional potential well in the direc-
tion of the x-axis. We assume that the particle has the same potential energy at any
point of the well. It is useful to put the potential energy equal to zero in the well
and equal to infinity elsewhere. Schrödinger wave equation for the particle in the
potential well is written in the form (because V = 0)

d2Ψ(x)

dx2
+

8π2m

h2
EΨ(x) = 0, (8)

Ψ(0) = Ψ(a) = 0. (9)

The solution to (8) and (9) reads as follows:

Ψn(x) =
√

2/a sin(nπx/a), En = (nh)2/(8ma2), n = 1, 2, 3, . . . , (10)

where normalization factor
√

2/a results from
∫ a

0
Ψ2(x)dx = 1 and a is the width of

the well. The analytical solution is shown in Figure 3.
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Fig. 3: Potential well. Wave functions Ψi (solid line) and the probability functions Ψ∗
iΨi

(dashed line) shifted vertically by the related energies Ei for i = 1, 2, 3.

2.2 Harmonic oscillator

Another simple system of quantum mechanics is a harmonic motion of a particle.
This system is interesting for us because it plays important role in the reasoning in
molecular spectroscopy.

We consider a particle of the mass m which is moving along the x-axis alternately
in positive and negative direction so that point x = 0 is the equilibrium. The
acting force is given by F = −kx with k > 0, which results in the potential energy
V = − ∫ x

0
(−kx)dx = 1

2
kx2 and the following Schrödinger equation

d2Ψ(x)

dx2
+

8π2m

h2
(E − 1

2
kx2)Ψ(x) = 0. (11)
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Fig. 4: Harmonic oscillator. Wave functions Ψi (solid line) and the probability func-
tions Ψ∗

iΨi (dashed line) shifted vertically by the related energies Ei for i = 1, 2, 3, 4.

The solution can be found by cutting off infinite power series and total energy can
be computed as [2]

En = h/(2π) ·
√

k/m · (n+ 1/2), n = 0, 1, 2, . . . . (12)

The solution can be found also by using numerical solvers. We solve problem (11),
after adjustment we obtain

d2Ψ(x)

dx2
+ (λ− b2x2)Ψ(x) = 0, λ =

8π2mE

h2
b =

2π
√
mk

h
(13)

Ψ(x) = 0, for |x| → ∞. (14)

We assume that the wave function is close to zero at distance l. We can write
variational formulation of problem (13) and (14) and look for λ > 0 and Ψ(x) ∈
H1

0 (−l, l) such that
∫ l

−l

Ψ′(x)v′(x)dx+ b2
∫ l

−l

x2Ψ(x)v(x)dx = λ

∫ l

−l

Ψ(x)v(x)dx, ∀v ∈ H1
0 (−l, l).

We employ a finite element discretization to the latter formulation which leads
to an approximate solution Ψh(x) =

∑n
i=1 ψiϕi(x) with continuous piecewise linear

basis function ϕi(x). The coefficients vector Ψ̄ and energies λ solve the following
eigenvalue problem

AΨ̄ = λBΨ̄,

[A]ij =

∫ l

−l

ϕ′
i(x)ϕ

′
j(x)dx+ b2

∫ l

−l

x2ϕi(x)ϕj(x)dx,

[B]ij =

∫ l

−l

ϕi(x)ϕj(x)dx.

The Matlab software was use to solve the eigenvalue problem. Figure 4 shows the
solution.
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Conclusion

In this paper we have presented some methods for dynamic simulation of particle
effects. In the second part we showed analytical solution of the simple problems in
quantum mechanics and numerical approach using the finite element method.
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