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INTERACTION OF COMPRESSIBLE FLOW WITH AN AIRFOIL∗

Jan Česenek, Miloslav Feistauer

Abstract

The paper is concerned with the numerical solution of interaction of compressible
flow and a vibrating airfoil with two degrees of freedom, which can rotate around an
elastic axis and oscillate in the vertical direction. Compressible flow is described by
the Navier-Stokes equations written in the ALE form. This system is discretized by
the semi-implicit discontinuous Galerkin finite element method (DGFEM) and cou-
pled with the solution of ordinary differential equations describing the airfoil motion.
Computational results showing the flow induced airfoil vibrations are presented.

1 Formulation of the continuous problem

We consider 2D compressible viscous flow in a bounded domain Ω(t) ⊂ R2 de-
pending on time t ∈ [0, T ]. We assume that the boundary ∂Ω(t) of Ω(t) consists of
three disjoint parts: ∂Ω(t) = ΓI ∪ ΓO ∪ ΓW (t), where ΓI is inlet, ΓO is outlet and
ΓW (t) is impermeable wall, whose part may move.

The time dependence of the domain is taken into account with the aid of a reg-
ular one-to-one ALE mapping (cf. [4]) At : Ω0 −→ Ωt, i.e. At : X 7−→ x =
x(X, t) = At(X). We define the ALE velocity z̃(X, t) = ∂At(X)/∂t, z(x, t) =
z̃(A−1(x), t), t ∈ [0, T ], X ∈ Ω0, x ∈ Ωt, and the ALE derivative of a function
f = f(x, t) defined for x ∈ Ωt and t ∈ (0, T ): DAf(x, t)/Dt = ∂f̃(X, t)/∂t, where
f̃(X, t) = f(At(X), t), X ∈ Ω0.

The system describing compressible flow consisting of the continuity equation,
the Navier-Stokes equations and the energy equation (see, e.g. [2]) can be written in
the ALE form

DAw

Dt
+

2∑
s=1

∂gs(w)

∂xs

+w divz =
2∑

s=1

∂Rs(w,∇w)

∂xs

, (1)

where for i, j = 1, 2 we have

w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, E)T ∈ IR4, gi(w) = f i(w)− ziw, (2)

f i(w) = (fi1, · · · , fi4)T = (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p, (E + p)vi)
T ,

Ri(w,∇w) = (Ri1, . . . , Ri4)
T =

(
0, τVi1 , τ

V
i2 , τ

V
i1 v1 + τVi2 v2 + k∂θ/∂xi

)T
,

τVij = (−2 divv/3 δij + 2 dij(v))/Re, dij(v) = (∂vi/∂xj + ∂vj/∂xi) /2.

∗The research of J. Česenek was supported by the Grant No. 12810 of the Grant Agency of the
Charles University Prague. The research of M. Feistauer is a part of the research project MSM
0021620839 of the Ministry of Education of the Czech Republic. It was also partly supported by
the grant No. 201/08/0012 of the Czech Science Foundation.
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We use the following notation: ρ - density, p - pressure, E - total energy, v =
(v1, v2) - velocity, θ - absolute temperature, γ > 1 - Poisson adiabatic constant,
cv > 0 - specific heat at constant volume, Re - the Reynolds number, k - heat
conduction. The vector-valued function w is called the state vector, the functions f i

are the so-called inviscid fluxes and Ri represent viscous terms. The above system
is completed by the thermodynamical relations

p = (γ − 1)(E − ρ|v|2/2), θ =
(
E/ρ− |v|2/2) /cv

and equipped with the initial condition w(x, 0) = w0(x), x ∈ Ω0, and the following
boundary conditions:

ρ = ρD, v = vD,

2∑
i,j=1

τVij nivj + k
∂θ

∂n
= 0 on ΓI ,

v|ΓWt
= zD − velocity of a moving wall, ∂θ/∂n = 0 on ΓWt ,

2∑
i=1

τVij ni = 0, j = 1, 2, ∂θ/∂n = 0 onΓO,

with given data w0, ρD, vD, zD.
The terms Rs and f s satisfy the relations

Rs(w,∇w) =
2∑

k=1

Ks,k(w)
∂w

∂xk

, f s(w) = As(w)w, (3)

where Ks,k(w) ∈ R4×4 and As is the Jacobian matrix of f s.

2 Discretization

2.1 Discontinuous Galerkin space discretization

By Ωh(t) we denote polygonal approximation of the domain Ω(t). Let Th(t) =
{Ki}i∈I(t) be a triangulation of the domain Ωh(t) formed by a finite number of closed
triangles Ki with mutually disjoint interiors. We set hK = diam(K) as the di-
ameter of K, h(t) = maxK∈Th(t)hK , |K| is the Lebesgue measure of K. All ele-
ments of Th(t) = {Ki}i∈I(t) will be numbered so that I(t) ⊂ Z+ = {0, 1, 2, 3, ...}
is a suitable index set. If two elements have a common face, than we call them
neighbours and put Γij = Γji = ∂Ki ∩ ∂Kj. For each i ∈ I(t) we define the
index set s(i)(t) = {j ∈ I(t);Kj is a neighbour of Ki}. The boundary ∂Ωh(t) is
formed by a finite number of sides of elements Ki adjacent to ∂Ωh(t). We de-
note all these boundary sides by Sj, where j ∈ Ib(t) ⊂ Z− = {−1,−2,−3, ...}
and set γ(i)(t) = {j ∈ Ib(t);Sj is a side of Ki},Γij = Sj for Ki ∈ Th(t) such that
Sj ⊂ ∂Ki, j ∈ Ib(t). For an element Ki, not containing any boundary side Sj, we
set γ(i)(t) = 0/. Obviously s(i)(t) ∩ γ(i)(t) = 0/ for all i ∈ I(t). Moreover we define
S(i)(t) = s(i)(t) ∪ γ(i)(t).

We shall look for an approximate solution of the problem in the space Sh(t) =
{v; v |K∈ P r(K),∀K ∈ Th(t)}4, where r ≥ 0 is an integer and P r(K) is the space
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of polynomials of degree at most r on K. If v ∈ S, then we use the notation v|Γij

and v|Γji
for the traces of v on Γij from the side of the adjacent elements Ki and Kj,

respectively, 〈v〉Γij
for the average of traces of v on the face Γij from the side of the

adjacent elements and [v]Γij
the jump of v on Γij. By nij we denote the unit outer

normal to the boundary of Ki on Γij.

For arbitrary t∈ [0, T ] we can multiply the system by a test function ϕ∈ Sh(t)
integrate and sum over all Ki ∈ Th(t), apply Green’s theorem and introduce a nu-
merical flux H. Then we introduce the following forms (cf. [1]):

b̃h(w,ϕh) =−
∑

i∈I(t)

∫

Ki

2∑
s=1

gs(w)
∂ϕh

∂xs

dx+
∑

i∈I(t)

∑

i∈S(i)(t)

∫

Γij

H(w|Γij
,w|Γji

,nij)dS

ãh(w,ϕh) =−
∑

i∈I(t)

∫

Ki

2∑
s=1

2∑

k=1

Ks,k(w)
∂w

∂xk

· ∂ϕh

∂xs

dx

+
∑

i∈I(t)

∑
j∈s(i)(t)

j<i

∫

Γij

2∑
s=1

〈
2∑

k=1

Ks,k(w)
∂w

∂xk

〉
(nij)s · [ϕh ]dS

+
∑

i∈I(t)

∑

j∈γD(i)(t)

∫

Γij

2∑
s=1

2∑

k=1

Ks,k(w)
∂w

∂xk

(nij)s ·ϕhdS

+ Θ
∑

i∈I(t)

∑
j∈s(i)(t)

j<i

∫

Γij

2∑
s=1

〈
2∑

k=1

KT
k,s(w)

∂ϕh

∂xk

〉
(nij)s · [w ]dS

+ Θ
∑

i∈I(t)

∑

j∈γD(i)(t)

∫

Γij

2∑
s=1

2∑

k=1

KT
k,s(w)

∂ϕh

∂xk

(nij)s ·wdS

Jσ
h (w,ϕh) =

∑

i∈I(t)

∑
j∈s(i)(t)

j<i

∫

Γij

σ[w] · [ϕh]dS +
∑

i∈I(t)

∑

j∈γD(i)(t)

∫

Γij

σw ·ϕhdS

l̃h(w,ϕh) =Θ
∑

i∈I(t)

∑

j∈γD(i)(t)

∫

Γij

2∑
s=1

2∑

k=1

KT
k,s(w)

∂ϕh

∂xk

(nij)s ·wBdS

+
∑

i∈I(t)

∑

j∈γD(i)(t)

∫

Γij

σwB ·ϕhdS,

where σ |Γij
= CW

h(Γij)Re
, CW > 0 is a suitable sufficiently large constants and wB is

a boundary state defined by the Dirichlet boundary condition and extrapolation.
By (·, ·) we denote the L2(Ω(tk+1))-scalar product. We set Θ = −1 or 0 or 1 and get
the so-called nonsymmetric or incomplete or symmetric version of the viscous form.
In practical computations we use Θ = 1.
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Now we can define the discrete problem: Find wh(t) ∈ Sh(t) such that(
DAwh(t)

Dt
,ϕh

)
− (divz(t)wh(t),ϕh) + b̃h(wh(t),ϕh) + ãh(wh(t),ϕh)

+ Jσ
h (wh(t),ϕh) = l̃h(ϕh) ∀ϕh ∈ Sh(t), ∀t ∈ (0, T ),

wh(0) = w0
h.

where w0
h is the Sh(0)-approximation of w0. It means that(

w0
h,ϕh

)
=

(
w0,ϕh

) ∀ϕh ∈ Sh(0).

2.2 Time discretization

Let us consider a partition 0 = t0 < t1 < ... < tM of the interval [0, T ], tk = kτ ,
τ > 0. We use the approximation wh(tl) ≈ wl

h, defined in Ωh(tl). Then we set
ŵk

h(x) = wk
h(Atk(A−1

tk+1
(x))), x ∈ Ωh(tk+1), and approximate the ALE-derivative

using the first order backward difference:
(
DAwh(tk+1)

Dt
,ϕh

)
≈

(
wk+1

h − ŵk
h

τ
,ϕh

)
.

Since the terms ãh and b̃h are nonlinear, we shall linearized them. For b̃h we use the
property (3) of f s and the definition of gs. We get the approximation

∑

i∈I(t)

∫

Ki

2∑
s=1

gs(w) · ∂ϕh

∂xs

dx ≈ σ1 =
∑

i∈I(tk+1)

∫

Ki

2∑
s=1

(
As(ŵ

k
h)− zsI

)
wk+1

h · ∂ϕh

∂xs

dx.

Now let us set P(w,n) :=
∑2

s=1 (As(w)− zsI)ns, (n = (n1, n2), n
2
1 + n2

2 = 1).
We have

∑2
s=1 gs(w)ns = P(w,n)w. It is possible to show that the matrix P is di-

agonalizable: P = TDT−1, where T is a nonsingular matrix, D = diag(λ1, ..., λ4) is
a diagonal matrix and λi are the eigenvalues of P. Then we can define the ”positive”
and ”negative” parts of the matrix P: P± = TD±T−1, where D± = diag(λ±

1 , ..., λ
±
4 )

and λ+ = max(λ, 0), λ− = min(λ, 0). Using this concept, we introduce the so-called
Vijayasundaram numerical flux

HV (w1,w2,n) = P+

(
w1 +w2

2
,n

)
w1 +P−

(
w1 +w2

2
,n

)
w2.

Then we can approximate integrals over faces in the following way:
∑

i∈I(t)

∑

j∈S(i)(t)

∫

Γij

H(w|Γij
,w|Γji

,nij) dS ≈ σ2 :=

∑

i∈I(tk+1)

∑

j∈S(i)(tk+1)

∫

Γij

P+

(
ŵk

h|Γij
+ŵk

h|Γji

2
,nij

)
wk+1

h |Γij
· ϕh dS

+
∑

i∈I(tk+1)

∑

j∈S(i)(tk+1)

∫

Γij

P−
(
ŵk

h|Γij
+ŵk

h|Γji

2
,nij

)
wk+1

h |Γji
· ϕhdS

and define the form bh(ŵ
k
h,w

k+1
h ,ϕh) = −σ1 + σ2.
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Using (3), we linearize viscous terms:

ah(ŵ
k
h,w

k+1
h ϕh) = −

∑

i∈I(tk+1)

∫

Ki

2∑
s=1

2∑

k=1

Ks,k(ŵ
k
h)
∂wk+1

h

∂xk

· ∂ϕh

∂xs

dx

+
∑

i∈I(tk+1)

∑
j∈s(i)(tk+1)

j<i

∫

Γij

2∑
s=1

〈
2∑

k=1

Ks,k(ŵ
k
h)
∂wk+1

h

∂xk

〉
(nij)s · [ϕh ]dS

+
∑

i∈I(tk+1)

∑

j∈γD(i)(tk+1)

∫

Γij

2∑
s=1

2∑

k=1

Ks,k(ŵ
k
h)
∂wk+1

h

∂xk

(nij)s ·ϕhdS

+ Θ
∑

i∈I(tk+1)

∑
j∈s(i)(tk+1)

j<i

∫

Γij

2∑
s=1

〈
2∑

k=1

KT
k,s(ŵ

k
h)
∂ϕh

∂xk

〉
(nij)s · [wk+1

h ]dS

+ Θ
∑

i∈I(tk+1)

∑

j∈γD(i)(tk+1)

∫

Γij

2∑
s=1

2∑

k=1

KT
k,s(ŵ

k
h)
∂ϕh

∂xk

(nij)s ·wk+1
h dS,

and the right-hand side form:

lh(ŵ
k
h,ϕh) = Θ

∑

i∈I(tk+1)

∑

j∈γD(i)(tk+1)

∫

Γij

2∑
s=1

2∑

k=1

KT
k,s(ŵ

k
h)
∂ϕh

∂xk

(nij)s ·wk+1
B dS

+
∑

i∈I(tk+1)

∑

j∈γD(i)(tk+1)

∫

Γij

CW

h(Γij)Re
wk+1

B ·ϕhdS

All these considerations lead us to the following semi-implicit scheme: For k = 0, 1, ...
find wk+1

h ∈ Sh(tk+1) such that

(
wk+1

h − ŵk
h

τ
,ϕh

)
− (

divz(tk+1)w
k+1
h ,ϕh

)
+ bh(ŵ

k
h,w

k+1
h ,ϕh) (4)

+ah(ŵ
k
h,w

k+1
h ,ϕh) + Jσ

h (w
k+1
h ,ϕh) = lh(ŵ

k
h,ϕh) ∀ϕh ∈ Sh(tk+1).

3 Fluid-structure interaction

We shall simulate motion of a profile with two degrees of freedom: H - displace-
ment of the profile in the vertical direction and α - the rotation of the profile around
the so-called elastic axis. The motion of the profile is described by the system of
ordinary differential equations

mḦ + kHHH + Sαα̈ = −L(t), (5)

SαḦ + IαH + kααα = M(t),

where we use the following notation: m - mass of the airfoil, L(t) - aerodynamic
lift force, M(t) - aerodynamic torsional moment, Sα - static moment of the airfoil
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Fig. 1: Displacement H (left) and rotation angle α (right) of the airfoil in dependence on
time for far-field velocity 10, 30 and 40 m/s.

around the elastic axis, Iα - inertia moment of the airfoil around the elastic axis,
kHH - bending stiffness, kαα - torsional stiffness. For the derivation of system (5)
see, e.g. [5].

System (5) is transformed to a first-order system and solved by the fourth-order
Runge-Kutta method together with the discrete flow problem (4). The ALE mapping
is constructed on the new time level tk+1 on the basis of the computed values H(tk+1)
and α(tk+1).

4 Numerical experiments

We perform numerical experiments with the following data and initial conditions:
m = 0.086622 kg, Sa = −0.000779673 kgm, Ia = 0.000487291 kg m−2, kHH =
105.109 N/m, kαα = 3.696682 Nm/rad, l = 0.05 m, c = 0.3 m, far-field density
ρ = 1.225 kg m−3, H(0) = −20mm, α(0) = 6◦, Ḣ(0) = α̇(0) = 0.
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Figure 1 shows the displacement H and the rotation angle α in dependence on
time for the far-field velocity 10, 30 and 40 m/s. We see that for the velocities 10 and
30 m/s the vibrations are damped, but for the velocity 40 m/s we get the flutter
instability when the vibration amplitudes are increasing in time. The monotonous
increase and decrease of the average values of H and α, respectively, shows that the
flutter is combined with a divergence instability in the presented example.

These results are qualitatively comparable with vibrations of the airfoil
NACA 0012 induced by viscous incompressible flow, contained in [3]. For low far-field
velocity the differences of the presented results and results from [3] are small, because
the compressibility of the fluid is not significant. For the far-field velocity 40 m/s
the qualitative behaviour of the vibrations (flutter combined with divergence) is
comparable with the results in [3] obtained by the finite element method. The
quantitative difference is already larger probably due to compressibility taken into
account in the present paper.
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