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HIGH RESOLUTION SCHEMES FOR OPEN CHANNEL FLOW∗

Marek Brandner, Jǐŕı Egermaier, Hana Kopincová

Abstract

One of the commonly used models for river flow modelling is based on the Saint-
Venant equations – the system of hyperbolic equations with spatially varying flux
function and a source term. We introduce finite volume methods that solve this
type of balance laws efficiently and satisfy some important properties at the same
time. The properties like consistency, stability and convergence are necessary for
the mathematically correct solution. However, the schemes should be also positive
semidefinite and preserve steady states to obtain physically relevant solution of the
flow problems. These schemes can also be modified to a high order version or for
solving flow problems with a friction source term.

1 Introduction

One of the most general models for simulating fluid flow is based on the Navier-
Stokes equations. This model is suitable for viscous incompressible flow, but it is
not directly applicable to open channel flow problems. In this case it is necessary
to define some conditions on moving boundary or to use the model with the inter-
action between water and air layer. In our case it is convenient to use the simpler
model based on the Saint-Venant equations. They are the most common choice
which describes incompressible open channel flow, where vertical component of the
acceleration is neglected. This model can be used for river flow or for problems of
coastal areas flow.

2 Mathematical model

The one-dimensional Saint-Venant equations have the following form:

ht + (hv)x = 0,

(hv)t +

(
hv2 +

1

2
gh2

)

x

= −ghBx, (1)

where h = h(x, t) is the unknown fluid depth, v = v(x, t) is the unknown horizontal
velocity, B = B(x) is the elevation of the bottom surface and g is the gravitational
constant. The other source terms (e.g. friction term important for flood modelling)
can be added into the system. In the following parts of this paper we use, for
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simplicity, the system in the form (1). This system can be simply written in the
matrix form

ut + [f(u)]x = ψ(u, x). (2)

The following schemes use the finite volume discretization with the space step ∆x
such that xj = j∆x, j ∈ Z, and adaptive time step ∆tn based on the CFL stability
condition.

3 Properties of the methods

In addition to important properties like conservation, consistency and stability
the numerical schemes should satisfy some other ones.

• Positive semidefiniteness – some of the unknown functions have to be non-
negative from their physical fundament. Therefore it is necessary to use such
a scheme that satisfies the nonnegativity of these functions. We suppose h ≥ 0
in our problem.

• Preserving steady states – the numerical scheme should preserve such steady
states, which occur in the exact solution. The steady state means ut = 0
and therefore [f(u, x)]x = ψ(u, x). Then the numerical scheme should balance
the flux difference and the approximation of the source terms. The presented
schemes do not preserve general steady states but only the special one called
“rest at lake” (h+B = const., v = 0).

• High resolution – we can construct the scheme of the high order of accuracy.
However, the high order schemes produce spurious oscillations in the regions
with discontinuities in the solution. Therefore our goal is to construct such
a scheme which is of high order of accuracy in the area with the smooth solution
and first order accurate if there exist jumps in the solution. Moreover, this
scheme should contain a small amount of artificial diffusion.

Furthermore, the big advantage of the method is its possibility to use long time
steps, especially if we solve large scale problems. From this point of view we can
choose between explicit and implicit methods.

Explicit methods are easier to implement and they have low cost per time step,
because they need not solve any system of algebraic equations. However, the time
step is bounded by the CFL stability condition. Furthermore, they are often ineffi-
cient for the solution of the stationary problems.

On the other hand, the implicit methods are unconditionally stable or stable over
a wide range of the time steps. But they have high cost per time step which is caused
by solving the system of algebraic equations. The linear solvers have also problems
with convergence as time step increases. Implicit schemes are often insufficiently
accurate for transient problems at large time step.

The main idea is to construct an adaptive semi-implicit scheme with advantages
of the implicit and explicit methods.
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4 Semi-implicit upwind method

The following scheme is based on the Roe type scheme described in [1]. The
general semi-implicit finite volume scheme for balance laws in the conservative form
can be written as

Un+1
j −Un

j

∆t
= − 1

∆x
[(1−θ)(Fn

j+1/2−Fn
j−1/2)+θ(Fn+1

j+1/2−Fn+1
j−1/2)]+(1−θ)Ψn

j +θΨn+1
j ,

(3)
where Un

j is the approximation of integral average of unknown function u(x, t) in
the cell 〈xj−1/2,j+1/2〉 at the time tn

Un
j ≈ 1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx.

The numerical fluxes Fn
j+1/2 approximate the flux function at the the boundary of

neighbouring cells j and j+1 and Ψn
j is a suitable approximation of the source term

in the cell 〈xj−1/2,j+1/2〉. The finite volume methods are in detail described in [3].
The parameter θ takes values from the interval 〈0, 1〉. For θ = 0 the scheme is

explicit, for θ = 1 it is implicit and for 0 < θ < 1 it is the semi-implicit scheme. The
time step of the explicit scheme for hyperbolic problems is bounded by the stability
CFL condition. The CFL number can be defined as

CFL =
∆t

∆x
max
p=1,2

|λp|,

where λp are approximations of the eigenvalues of the Jacobian matrix ∂f/∂u. It has
been shown [1] that the CFL number for the Roe type semi-implicit scheme satisfies

CFL ≤ 1

1− θ

in the scalar case. The construction of the numerical fluxes at the time level tn is
based on the approximate Jacobian matrix An

j+1/2 ≈ ∂f/∂u(xj+1/2, tn). The numer-
ical flux has the form:

Fn
j+1/2 =

1

2
[f(Un

j ) + f(Un
j+1)]−

1

2
|An

j+1/2|(Un
j+1 −Un

j ),

where
|An

j+1/2| = Rn
j+1/2|Λn

j+1/2|Ln
j+1/2R

n
j+1/2.

Here, |Λn
j+1/2| = diag(|λp,n

j+1/2|), where λp,n
j+1/2 are eigenvalues of A

n
j+1/2, and Rn

j+1/2 is
the matrix of the right eigenvectors of An

j+1/2. In the case of the first order scheme
the matrix Ln

j+1/2 is the identity matrix I, in the case of the flux limited scheme it
has the form

Ln
j+1/2 = I+ diag

(
ϕ(u)

(
1−min

{
1, |λp,n

j+1/2|
∆t

∆x

}))
,
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where ϕ(u) is some limiter function based on the jumps of the unknown function
u(x, t). It is clear that for CFL > 1 we also obtain the first order upwind scheme.

The construction of the numerical fluxes at the time level tn+1 is very similar.
We use new values of the unknown function Un+1, but if we do not want to solve
a nonlinear system of algebraic equations it is necessary to use a linearization for
evaluating the flux function, i.e.

f(Un+1
j ) ≈ f(Un

j ) +An
j+1/2(U

n+1
j −Un

j ). (4)

It remains to define the approximation of the source terms. To preserve the balancing
property it is useful to decompose the source term integral in a similar way as the
numerical fluxes:

Ψn
j = Ψn,−

j+1/2 +Ψn,+
j−1/2,

where

Ψn,±
j+1/2 =

1

2
(I±A−1

j+1/2|Aj+1/2|)Ψn
j+1/2.

Then we can construct a block tridiagonal system of the linear equations.

5 Semi-implicit central-upwind method

Central-upwind schemes, based on the scheme described in [2], preserve only
special steady states, where the spatial derivatives of unknown functions (or their
reconstructions) are equal to zero. So we define new unknown function for water
level c = h + B (to preserve special steady state “rest at lake”, where hv = 0
and c = h + B = const.). Then the system of the Saint-Venant equations can be
rewritten in terms of c and momentum hv as

(
c
hv

)

t

+

(
hv

(hv)2/(c−B) + g(c−B)2/2

)

x

=

(
0

−g(c−B)Bx

)
.

The semidiscrete conservative scheme has the following form:

d

dt
Uj(t) = −Fj+1/2(t)− Fj−1/2(t)

∆x
+Ψj(t).

Numerical fluxes at the time tn are defined as (see [2])

Fn
j+1/2 =

an,+j+1/2f(U
n,−
j+1/2)− an,−j+1/2f(U

n,+
j+1/2)

an,+j+1/2 − an,−j+1/2

+
an,+j+1/2a

n,−
j+1/2

an,+j+1/2 − an,−j+1/2

[
Un,+

j+1/2 −Un,−
j+1/2

]
,

(5)
where the approximations of the speeds of the local waves are defined as

an,+j+1/2 = max
{
λ2

(
f ′(Un,−

j+1/2)
)
, λ2

(
f ′(Un,+

j+1/2)
)
, 0
}
,

an,−j+1/2 = min
{
λ1

(
f ′(Un,−

j+1/2)
)
, λ1

(
f ′(Un,+

j+1/2)
)
, 0
}
,

(6)
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and Un,±
j+1/2 are the left and the right values of some polynomial reconstruction of

the unknown function at xj+1/2 (in this case Un,±
j+1/2 = [Cn,±

j+1/2, (HV )n,±j+1/2]
T ). There

exist many available reconstructions. We use the following polynomial TVD recon-
struction (the symbol U represents the components of the vector U):

Un,+
j+1/2 = Un

j+1 −
(
1−min

{
1, λmax

j+1/2
∆t
∆x

})
∆x
2
(Ux)

n
j+1,

Un,−
j+1/2 = Un

j +
(
1−min

{
1, λmax

j+1/2
∆t
∆x

})
∆x
2
(Ux)

n
j ,

(7)

where λmax
j+1/2 = max

p=1,2
|λp,n

j+1/2| and the symbol (Ux)
n
j stands for

(Ux)
n
j =





(Ux)
n
j,L if |(Ux)

n
j,L| ≤ |(Ux)

n
j,R| and (Ux)

n
j,L · (Ux)

n
j,R > 0,

(Ux)
n
j,R if |(Ux)

n
j,L| > |(Ux)

n
j,R| and (Ux)

n
j,L · (Ux)

n
j,R > 0,

0 if (Ux)
n
j,L · (Ux)

n
j,R ≤ 0,

(8)

where

(Ux)
n
j,L =

Un
j − Un

j−1

∆x
, (Ux)

n
j,R =

Un
j+1 − Un

j

∆x
.

To preserve the special steady state “rest at lake” it is also necessary to choose
approximation of the source term which is equal to the numerical flux difference.
This difference can be expressed as

−
F

n,(2)
j+1/2 − F

n,(2)
j−1/2

∆x
= − 1

2∆x
g
((

Cn
j+1/2 −B(xj+1/2)

)2 − (
Cn

j−1/2 −B(xj−1/2)
)2)

= g
B(xj+1/2)−B(xj−1/2)

∆x
·
Cn

j+1/2 −B(xj+1/2) + Cn
j−1/2 −B(xj−1/2)

2
.

Therefore the consistent discretization of the source terms has the form

Ψ
n,(2)
j = −g

B(xj+1/2)−B(xj−1/2)

∆x
·

(
Cn,−

j+1/2 −B(xj+1/2)
)
+
(
Cn,+

j−1/2 −B(xj−1/2)
)

2
.

(9)
Now we are ready to construct the semi-implicit central-upwind scheme based on the
same ideas as the semi-implicit upwind scheme described before. This scheme has
the form (3) and the numerical fluxes at the time level tn+1 are defined as follows:

Fn+1
j+1/2 =

an,+j+1/2f(U
n+1,−
j+1/2 )− an,−j+1/2f(U

n+1,+
j+1/2 )

an,+j+1/2 − an,−j+1/2

+
an,+j+1/2a

n,−
j+1/2

an,+j+1/2 − an,−j+1/2

[
Un+1,+

j+1/2 −Un+1,−
j+1/2

]
.

(10)
We can see that the approximations of the maximum speeds of the local wave are the
same as the approximations at the time level tn. The reconstruction of the unknown
functions is based on the (7) again. However, if we use (7) (especially choice of the
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differences (8)) for the values at the time level tn+1 by the same way as for the values
at the time level tn then (3) is the nonlinear system of algebraic equations. Therefore
we define the components of (Ux)

n+1
j as

(Ux)
n+1
j =





(Ux)
n+1
j,L if |(Ux)

n
j,L| ≤ |(Ux)

n
j,R| and (Ux)

n
j,L · (Ux)

n
j,R > 0,

(Ux)
n+1
j,R if |(Ux)

n
j,L| > |(Ux)

n
j,R| and (Ux)

n
j,L · (Ux)

n
j,R > 0,

0 if (Ux)
n
j,L · (Ux)

n
j,R ≤ 0,

where

(Ux)
n+1
j,L =

Un+1
j − Un+1

j−1

∆x
, (Ux)

n+1
j,R =

Un+1
j+1 − Un+1

j

∆x
.

Then (3) is the linear system of algebraic equations. If we use CFL > 1, the
reconstructed function is piecewise constant and the scheme is of the first order of
accuracy.

The linearization of the flux function is provided in the same manner as in (4).
The approximation of the source terms is simply defined by (9) with the reconstruc-
tion values Cn+1,±, i.e.

Ψ
n+1,(2)
j = −g

B(xj+1/2)−B(xj−1/2)

∆x
·

(
Cn+1,−

j+1/2 −B(xj+1/2)
)
+
(
Cn+1,+

j−1/2 −B(xj−1/2)
)

2
.

and the scheme still preserves the steady state “rest at lake”.

6 Numerical experiment

This experiment simulates the steady state “rest at lake”. The described variants
of the central-upwind method are used. The initial conditions (Figure 1, top left)
are defined by

h(x, 0) +B(x) = 12, v(x, 0) = 0.

Boundary conditions are defined by zero discharge q(0, t) = const. = 0 and extrap-
olation of water level at the left boundary. The extrapolation of the discharge and
water level is used on the right end of the interval. In Figure 1 we can see the compar-
ison between the solutions computed by the balanced (bottom left) and unbalanced
(top right) explicit method. In the case of balanced implicit method (bottom right)
CFL = 1000 is used and the solution is depicted at the time t = 10000s.

7 Conclusions

We presented the high-resolution semi-implicit central upwind scheme for solving
the Saint-Venant equations, which combines some of the advantages of implicit and
explicit methods. As the basis for the implicit method we used the explicit method,
which is positive, computationally efficient and preserves the special steady states.
Since the method is nonlinear due to nonlinearity of the problem and the use of the
limiter, we proposed the special linearized reconstruction of unknown functions at
the time level tn+1. The resulting semi-implicit method preserves the special steady
states and it is also positive.
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Fig. 1: Comparison of the approximate solutions for the steady state problem.
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