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VECTORIZATION OF BITMAPS BASED ON THE LSQ METHOD∗

Stanislav Bartoň

Abstract

The paper presents the software procedure (using MAPLE 13) intended for a con-
siderable reduction of digital image data set to a more easily treatable extent. The
photos taken in high resolution (and corresponding data sets) contain coordinates of
thousands of pixels, polygons, vertexes. Presented approach substitutes this polygon
by the new one, where a smaller number of vertexes is used. The task is solved by
means of adapted least squares method. The presented algorithm enables the reduc-
tion of number of vertexes to 5% of its original extent with an acceptable accuracy
± one pixel (i.e. distance between the initial and the final polygon). The procedure
can be used for processing of similar types of 2D images and for the acceleration of
following computations.

1 Introduction

The acquisition and analysis of the visual information represents a powerful tool
for interpretation of a large volume of input data. Recently, the origin of computer
vision is intimately intertwined with computer history, having been motivated by
a wide spectrum of important applications such as robotics, biology, medicine, in-
dustry and physics, and also in agricultural and food sciences. Among all different
aspects underlying visual information, the shape of the objects certainly plays a spe-
cial role. The multidisciplinarity of image analysis, with respect to both techniques
and applications, has motivated a rich and impressive set of information resources
represented e.g. in a book by Costa and Cesar[5].

This paper presents a completely different approach, where input image data
are significantly reduced (to 5 % of original extent) by means of MAPLE 13 algo-
rithm without any loss of precision. An example of this is a digital photo of carrot.
Reduced data sets can be subsequently used for faster processing. The MAPLE soft-
ware environment have been successfully used to determine the shape of agricultural
products [1], [2], [3], [4].

2 Material and methods

2.1 Digital photo processing

A sample digital photo of carrot (bought in May 2010 in Kaufland, Jič́ın) has
been used in this study. But any similar object of natural of artificial origin could

∗The research has been supported by the Grant Agency of the Czech Academy of Sciences under
Contract No. IAA201990701.
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be used. The photo was taken by a digital camera Panasonic DMC-T27 with the
resolution of 10.5 Mpixels. Points creating carrots perimeter were extracted and ap-
proximated as a polygon. This process is in detail described in earlier paper [4]
and the applied Maple algorithm may be downloaded from author’s web page:
www.user.mendelu.cz/barton

2.2 Input data file organization

The input file contains three variables. The first one, O is a list of coordinates
of N points describing carrot perimeter, Oi =[Oi1 , Oi2 ], 1≤ i≤N . The second one P
is a list of n vertexes of the polygon approximating carrot perimeter, Pi = [Pi1 , Pi2 ],
1 ≤ i ≤ 1. List Λ is a list of n sublists containing coordinates of perimeter points
corresponding to sides of the approximating polygon, Λi = [Pj1 , Pj2 ], 1 ≤ j ≤ ni.
For example, Λk is kth element of the Λ and contains coordinates of the perimeter
points corresponding to kth side of the polygon. This side is represented by a kth line
segment with endpoints Pk and Pk+1. All coordinates are in pixels.

2.3 Optimization

Each lateral side of the approximating polygon, hereinafter mentioned only as
side, is given by the pair of their end points –P1 and P2. Square of distance of the
point O from the line given by points P1 and P2 can be expressed as a function:

S(O,P1, P2) =
(P21P12 − P21O2 − P22P11 − P12O1 + P11O2 + P22O1)

2

(P11 − P21)2 + (P12 − P22)2
. (1)

Sum of squares of distances of points corresponding to kth side is:

qk =
nk∑
i=1

S(Λik , Pk, Pk+1) . (2)

Finally sum of squares of all distances is:

Q =
n∑

k=1

qk =
n∑

k=1

(
nk∑
i=1

S(Λik , Pk, Pk+1)

)
, (3)

where Λik is ith member of the kth sublist of the list Λ ; in other words, it is ith point
of the sublist Λk, corresponding to the kth side. As we can see, Q = Q(P1, · · · , Pn) =
Q(P) is a function only of coordinates of the approximating polygon, because coor-
dinates of perimeter points are constant.

2.3.1 Global optimization – global data shaking

The approximating polygon is a closed curve; each endpoint of it belongs to two
sides, P1 = Pi, P2 = Pi+1, for that reason it is not possible to optimize each side
separately. We have to minimize Q with respect to Pn+1 = P1, reflecting condition
of the closed curve - approximating polygon, the end point of the last side is the first
point of the first side. Because Q is a non-linear function of P, it was necessary to
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use the iteration method. The Gauss-Newton iteration method is one of the most
effective tools.

We have to find a new polygon with h vertexes saved in he vector - list G = [Gi],
1 ≤ i ≤ h minimizing Q = Q(G). Vertexes saved in the list P may be used as an
initial approximation. It is not necessary to put h = n, because during the iteration,
both endpoints of the side may be so close that it will be possible to substitute them
by one point. So we may assume that at the beginning of the iteration h = n,, and
that later on it may be that h ≤ n.

Vector P can be corrected by means of list of small corrections ∆P . In this case
we can use:

Q(P + ∆P) = Q(P) + JQ ∆P , (4)

where JQ is the Jacobian matrix and minimizing of (3) is converted into a linear
problem of computation of the vector ∆P. Now we can put P = P + ∆P and
repeat the whole process until the moment when the requested accuracy is reached.
The usual condition of accuracy is ||∆P||2 ≤ ε, where ε is accuracy.

However this approach is divergent, and for that reason unusable.

2.3.2 Local optimization – local data shaking

The main idea of this approach is to optimize only the side with the largest
distance between perimeter points and corresponding polygon sides. In this case we
shall move only with two consequent P1 and P2 points from the vector P, P1 = Pi,
P2 = Pi+1. Index i corresponds to the side with the largest distance from the
perimeter points.

We have to remember that we shall move with three sides. These sides have
indexes i − 1, i and i + 1, and they are given by endpoints Pi−1, Pi, Pi+1 and Pi+2,
but points Pi−1 and Pi+2 are stable, without computed corrections. This approach
is based on the same theory as global optimization, but with a reduced volume.
Because P1 = [P1x, P1y] and P2 = [P2x, P2y] vector P may be organised as P =
[P1x, P1y, P2x, P2y]; organisation of vector of corrections is equivalent.

Non-zero elements of the Jacobian matrix JQ corresponding to the first iteration
step, i = 4, are displayed in the Fig. 1.

During the iteration the following cases may occur:

1. The simplest one is a convergence to desired accuracy. In this case there are
no changes between points corresponding to sides i− 1, · · · , i+ 1.

2. If correction P = P + ∆P is introduced, points on the perimeter may be
closer to the other side. Points form i− 1th side may move up to ith side, from
i + 1th side may move down to ith side. Points from ith side may move down
as well as up. This leads to a redistribution of points between sublists Λi−1, Λi

and Λi+1.

3. If perimeter points are redistributed, the number of points corresponding to
one side may be smaller than or equal to 3. In this case these points may
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Fig. 1: Non-zero elements of the JQ corresponding to the first iteration step.

be distributed between adjacent lines. The number of approximating polygon
vertexes drops down by 1, n = n− 1. The iteration must be restarted.

4. Lines i − 1, i or i, i + 1 may be parallel. Line i is assumed to be parallel if
S(Pi, Pi−1, Pi+1) ≤ 0.25, similar condition may be used for lines i and i+ 1. In
this case these lines may be substituted by one with the endpoints Pi−1, Pi,
or Pi, Pi+1, and sublists Λi−1, Λi or Λi, Λi+1 may be collected. The number
of approximating polygon vertexes drops down by 1, n = n− 1. The iteration
must be restarted.

5. The point is jumping. In the iteration process the point jumps up and down.
In this case the greatest difference of the optimized side of polygon is smaller
than the second one of all points. The iteration may be finished.

If the optimization is finished, the whole process may be repeated with a new
greatest distance until the moment when the same point will be after iteration again
the point with the largest distance. In this case we have two variants of continuation:

Variant 1: To continue with the point with the second largest distance, later with
third etc.

Variant 2: To put new polygon vertex into the point with the greatest distance and
to split corresponding subvector Li into two and to restart the whole process
of iteration. The number of approximating polygon vertexes rises up by 1,
n = n+ 1.

The usual maximal distance is close to 1 pixel. For that reason it is not necessary
to use Variant 2 very often, because the precision of digital photo is ± 1 pixel. This
means that Variant 2 is used only from time to time.

3 Results

The result is again a polygon with a lower number of vertexes than in initial
polygon and with a better approximation of the perimeter of the object. Quality of
the approximation may be evaluated in the following ways:
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1. By means of the greatest displacement.

2. By means of the average displacement.

3. By means of the number of polygon vertexes.

4. By means of the coefficient of linear correlation. The linear correlation is
computed for vectors of distances from the origin of perimeter points and cor-
responding points on the polygon vertexes.

Results are presented in Tab. 1 and Figs. 2 and 3 demonstrating the optimization
of the carrot digital photograph. Carrot perimeter creates 1819 vertexes.

Parameter Input polygon Optimized polygon

Greatest displacement 1.66 1.39
Average displacement 0.46 ± 0.33 0.38 ± 0.27

Vertexes 61 48
Correlation 0.9999923 0.9999942

Data reduction 3.35% 2.64%

Tab. 1: Results of the optimization.
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Fig. 2: Vectors of displacements of the initial and optimized polygon. d = mean displace-
ment, σ = quadratic error of the displacement.
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Fig. 3: Visualisation of the optimized polygon. Displacements are 30× enlarged.

4 Conclusions

The proposed procedure is of a general nature and can be used for data reduction
for the evaluation of other biological as well as artificial shapes. It can serve as
an effective and precise tool for acceleration of the process of computing and for
enabling the calculation itself, when using less powerful hardware, e.g. common PC
with a computer algebra program and/or in case of data processing using methods
of non-linear regression.
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