
PANM 16

Jan Přikryl
Graphics card as a cheap supercomputer

In: Jan Chleboun and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and Algorithms of
Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 3-8, 2012. Institute of Mathematics AS CR,
Prague, 2013. pp. 162–167.

Persistent URL: http://dml.cz/dmlcz/702722

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702722
http://dml.cz


Programs and Algorithms of Numerical Matematics 16

J. Chleboun, K. Segeth, J. Š́ıstek, T. Vejchodský (Eds.)
Institute of Mathematics AS CR, Prague 2013

GRAPHICS CARD AS A CHEAP SUPERCOMPUTER

Jan Přikryl

Institute of Information Theory and Automation
Pod Vodárenskou věž́ı 2, CZ-18200 Praha 8, Czech Republic

prikryl@utia.cas.cz

Abstract

The current powerful graphics cards, providing stunning real-time visual effects
for computer-based entertainment, have to accommodate powerful hardware compo-
nents that are able to deliver the photo-realistic simulation to the end-user. Given
the vast computing power of the graphics hardware, its producers very often offer
a programming interface that makes it possible to use the computational resources of
the graphics processors (GPU) to more general purposes. This step gave birth to the
so-called GPGPU (general-purpose GPU) processors that – if programmed correctly –
are able to achieve astonishing performance in floating point operations. In this paper
we will briefly overview nVidia CUDA technology and we will demonstrate a process
of developing a simple GPGPU application both in the native GPGPU style and in
the add-ons for Matlab (Jacket and Parallel Toolbox).

1. Introduction

While ‘standard’ modern CPUs provide users with growing computational power,
many scientists currently migrate towards general-purpose GPU (GPGPU) applica-
tions [3], using GPUs as parallel accelerators for memory-dense, floating-point in-
tensive, applications. An accelerated linear algebra package exploiting the hybrid
computation paradigm is currently under development [8] and GPGPU accelerators
are becoming a tool of choice in many computationally-bound research tasks.

The concept of a GPGPU evolved from the needs of 3D-graphics-intensive applica-
tions that dictated the design of the processor such that most transistors were ded-
icated to the data processing, contrary to a regular CPU. The GPUs were then
designed to be able to execute data-parallel algorithms on a stream of data, and
consequently, the GPGPU processors are sometimes called ‘stream processors’ and
are (not quite correctly) considered to be representatives of the SIMD processor
architecture. The currently dominant architectures for GPGPU computing are the
nVidia CUDA [5] and the AMD APP (formerly ATI Stream) [1].

The intrinsic parallel structure of a GPU (see Figure 1) allows a significant speed-
up in comparison to the multi-threaded single-processor architecture. The GPU
programs are called kernels and the processor typically processes only one kernel at

162



���������	�
����

�	�


�	�


�	�


�	�
 �	�


�	�


�	�


�	�


�
	
�
�
�
�


�
	
��

�
��
����
�

�
�
�
�
����


�
��
����
�

�
��
����
�

�
��
����
�

�
��
����
�

�
��
����
�

�
��
����
�

�
��
����
�

���������	�
����

�	�


�	�


�	�


�	�
 �	�


�	�


�	�


�	�


�
	
�
�
�
�


�
	
��

���������	�
����

�	�


�	�


�	�


�	�
 �	�


�	�


�	�


�	�


�
	
�
�
�
�


�
	
��

Figure 1: Thread processing cluster of a GTX280 GPU configured in ‘compute mode’.
The cluster contains three 8-core streaming multiprocessors, each of them has 16kB
of fast local memory shared to all 8 cores. Adapted from [2].

a time by running it on several streaming multiprocessor units that form the so-called
thread block. Every core in the GPU can access small but fast shared memory (local
memory of a multiprocessor), large and slow main memory, constants can be placed
to read-only and cached constant memory.

Although it is relatively easy to setup and perform basic operations with GPGPU
even using the low-level programming (mostly ANSI C variants), it quickly becomes
more complex when dealing with more demanding numerical problems – sometimes
a small change in the order of instructions can have a dramatic impact on the overall
performance. Additionally, special care must be taken when performing memory
operations:

• due to the relatively slow memory transfer, data transfers between the host sys-
tem and the GPU device shall be as few as possible, and shall be asynchronous
if possible,

• improper kernel code design with respect to the operation on different memory
types and ignoring memory access coalescing on the GPU device can cause
a significant performance loss,

• shared memory is organised into banks and accessing elements not consecu-
tively will cause a bank conflict.

The paper is composed as follows. The next section will introduce the covariance
function, which is one of the bottlenecks of the modelling systems with Gaussian-
process models. Different configurations of computation are described in Section 3,
and the demonstration with a case study is described in Section 4. Conclusions are
given at the end of the paper.

2. Modelling of dynamic systems with Gaussian processes

A Gaussian process [7] is a collection of random variables that have a joint mul-
tivariate Gaussian distribution. Assuming a relationship of the form y = f(x)

163



between an input x and an output y, we have y1, . . . , yn ∼ N (µ(x),Σpq), where
Σpq = C(xp,xq) gives the covariance between the output points corresponding to the
input vectors xp and xq and N (µ,Σ) denotes the multivariate Gaussian distribution
with the mean vector µ and covariance matrix Σ.

C(xp,xq) can be any function having the property of generating a positive definite
covariance matrix. A common choice is [7]

C(xp,xq) = v1 exp

[

−
1

2

D
∑

d=1

wd(xdp − xdq)
2

]

+ δpqv0, (1)

where Θ = [w1, . . . , wD, v0, v1]
T are the ‘hyperparameters’ of the covariance function,

D is the dimension of the input regressors and δpq = 1 if p = q and 0 otherwise.
The square exponential covariance function represents the smooth and continuous
functional part and the constant covariance function represents the noise part, when
it is presumed to be the white noise.

For a given problem, Θ is identified using the data at hand and the function (1)
is being evaluated many times before the process converges. This is one of the
bottlenecks of the whole identification process of Θ (although it is not the major
one, unfortunately there are operations that can reach even O(n3) [6], where n is the
number of data used for identification).

3. Acceleration with various programming effort

The identification of a Gaussian-process model can be accomplished using a set
of Matlab routines [4] that are an upgrade to the GPML toolbox [7] for machine
learning with Gaussian processes. We will use this code base to demonstrate the
process of upgrading the standard Matlab code to GPGPU code both with Jacket
and Parallel Toolbox.

The code of the GPML toolbox relies heavily on linear algebra operations, which
are considered to be fairly optimised even in the interpreted Matlab environment.
We will therefore study the following scenarios which are ordered according to the
working effort that has to be spent before actual computation:

Matlab on CPU only. We will use the native Matlab code on a multiple-core
CPU. No changes are necessary.

Matlab on CPU using MEX file. We will use the original GPML MEX code
on a multiple-core CPU. The publicly available ANSI C source code of a single MEX
subroutine has to be compiled for the target architecture.

Matlab using Parallel Toolbox. We will use Mathworks’ original interface
to GPU and create our own replacement of the covariance code to compute the co-
variance matrix. This can be accomplished by simply retyping all GPU variables to
gpuArray, carrying out the computation, and calling gather to transfer the covari-
ance matrix back to the CPU.

164



Matlab using Jacket. We will update the code of the covariance routine to
use the Jacket library, a third-party extension for GPU acceleration of Matlab code
(see http://www.accelereyes.com/). We will compute the covariance matrix on
a GPU using small modifications of the original GPML code: (1) all variables that
will reside on GPU have to be retyped to gdouble, (2) we have to check that CPU and
GPU variables do not occur within a single formula, and (3) the resulting covariance
matrix has to be fetched back to the CPU by retyping it back to double.

Matlab using GPU MEX file. We will use our own replacement of covariance
code to compute the covariance matrix on GPU using a hand-optimised GPU kernel.
The kernel has been written in ANSI C, manually debugged and hand optimised for
performance. Then a MEX file has to be created that takes care of moving data
to GPU, calling the kernel and copying the result back to the CPU memory. The
custom GPU kernel for the covariance function (1) relies on a coalesced memory
access to move up to 16 elements of xp and xq to the shared memory of the thread
block and computing an up to 16×16 sub-matrix of C in a single GPU kernel block.
The main speedup is achieved by utilising as many kernels in a block as possible for
a coalesced read of the elements from x into the shared memory, and by moving the
elements of Θ to the constant memory as they are used by all the invoked kernels.

In our tests, a standard PC equipped with an Intel i5/750 proces-
sor (42.56GFLOPS in both single and double precision) and 4GB of RAM (band-
width 17GB/s) will be used. The GPU was nVidia GTX 275, which includes
240 processor cores (1010 GFLOPS in single, but only 124 GFLOPS in double pre-
cision; the double-precision performance is by design 8× lower than that of a single-
precision computation [2]) running at 1404 MHz, with the memory interface run-
ning at 1134MHz. The board contains 896MB of GDDR3 memory (bandwidth
127GB/s), every processor may use up to 16 kB of fast shared memory. All compu-
tations will be carried out in Matlab R2012a in double-precision arithmetics as most
current GPUs have already an unlimited support for doubles.

4. Case study

The following example demonstrates the potential of the above described sce-
narios for accelerating the computation of covariance function (1). We will consider
computing mutual covariances of an output sequence y[k] generated by

y[k + 1] =
y[k]

1 + y2[k]
+ u3[k] + ǫ (2)

where ǫ is the normally-distributed white noise with σ = 0.05 that contaminates
the system response and the sampling time is one second. The input signal u[k] is
uniformly distributed noise in the interval [−1.5, 1.5] sampled every 10-th step to
prevent oscillations in the system.

The comparison of the computation times for the computation of one covariance
matrix as a function of the length of the y[k] sequence is given in Figure 2. We

165



0 1000 2000 3000 4000 5000

0.01

0.1

1

10

Input length

T
im

e 
[s

]

 

 

native
mex
jacket
p.toolbox
cuda

0 1000 2000 3000 4000 5000
0.1

1

10

Input length
S

pe
ed

up
 [−

]
 

 

mex
jacket
p.toolbox
cuda

Figure 2: Computation times for the model identification versus input data dimen-
sion for different hardware configurations (left). Relative speed-ups of different hard-
ware configurations with respect to the native CPU computation (right). Note that
the GTX275 GPU has been used in the double-precision mode, where it reaches only
1/8 of the single-precision performance – hence, in a single-precision arithmetic,
a GPU would be even more significantly faster than a CPU.

can see that for smaller dataset sizes below approximately 500 elements the native
CPU computations may be faster than the MEX and GPGPU code, while for larger
datasets the GPU-accelerated computations outperform the CPU by a factor up
to 20.

The relatively poor performance for smaller input sizes is mainly due to the
initialisation overhead required by the GPU and MEX code and due to the overhead
of GPU data transfer (the overhead is almost 90% of the total time for input length
100 and it is still about 30% for input length 5000). The computation is faster on
the host CPU unless this overhead can be eliminated or unless it represents a minor
part of the whole computation time. Notice also the poor performance of the Parallel
Toolbox code which is due to poor implementation of repmat() on GPU and the
fact that probably due to memory leaks in the GPU code the maximum length of
the input vector was 3500.

5. Conclusions

This paper provides a computational-time demonstration of how general-purpose
graphics processors (GPGPU) may be used to accelerate a computation by offloading
the most computational intensive parts of the code to the graphics hardware. The
demonstration was performed from the user point of view to test the usability of
different computational platforms for the Gaussian process model identification and

166



simulation. We can see that using a GPGPU computing architecture has its benefits,
even in cases when the user is no expert in GPU computing: using the commercial
Jacket library for Matlab or possibly Matlab Parallel Toolbox makes it possible to
achieve speedup over 10 with virtually no or moderate Matlab code changes. The
best results are of course provided by the hand-crafted code that has been optimised
for the GPU. However, producing such a code requires a significant programming
effort.

Source codes of all tested scenarios can be downloaded from http://staff.

utia.cas.cz/prikryl/panm16.zip.

Acknowledgments

This work has been supported by the Technology Agency of the Czech Republic
under project no. TA01030603 and in part by a bilateral project between Slovenia
and Czech Republic no. MEB091015.

References

[1] Advanced Micro Devices, Inc., Sunnyvale, CA: AMD Accelerated Parallel Pro-
cessing OpenCL Programming Guide, 2011.

[2] NVIDIA GeForce R© GTX 200 GPU Architectural Overview. TB-04044-001,
nVidia, 2008. URL http://www.nvidia.com/object/io_1213615494642.html.

[3] Kirk, D.B. and Hwu, W.W.: Programming Massively Parallel Proces-
sors A Hands-on Approach. Morgan Kaufmann, 2010, 1 edn.

[4] Kocijan, J., Ažman, K., and Grancharova, A.: The concept for Gaussian process
model based system identification toolbox. In: Proceedings of the International
Conference on Computer Systems and Technologies (CompSysTech). Rousse, Bul-
garia, 2007 pp. IIIA.23–1–IIIA.23–6.

[5] NVIDIA Corporation, Santa Clara, CA: CUDA Programming Guide Version
2.3.1, 2009.

[6] Quińonero-Candela, J. and Rasmussen, C.E.: A unifying view of sparse approx-
imate Gaussian process regression. J. Mach. Learn. Res. 6 (2005), 1939–1959.

[7] Rasmussen, C.E. and Williams, C.K.I.: Gaussian Processes for Machine Learn-
ing. MIT Press, Cambridge, MA, 2006.

[8] Tomov, S., Dongarra, J., and Baboulin, M.: Towards dense linear algebra for
hybrid GPU accelerated manycore systems. Parallel Comput.36 (2010), 232–240.

167


