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Abstract

We describe the basic ideas needed to obtain apriori error estimates for a nonlinear

convection diffusion equation discretized by higher order conforming finite elements.

For simplicity of presentation, we derive the key estimates under simplified assump-

tions, e.g. Dirichlet-only boundary conditions. The resulting error estimate is ob-

tained using continuous mathematical induction for the space semi-discrete scheme.

1. Continuous problem

Let Ω ⊂ R
d, d ∈ N, be a bounded open polyhedral domain. We treat the following

nonlinear convective problem. Find u : Ω× (0, T ) → R such that

a)
∂u

∂t
+ div f(u) = g in Ω× (0, T ), (1)

b) u
∣∣
∂Ω×(0,T )

= 0, (2)

d) u(x, 0) = u0(x), x ∈ Ω. (3)

Here g : Ω × (0, T ) → R and u0 : Ω → R are given functions. We assume that the
convective fluxes f = (f1, · · · , fd) ∈ (C2

b (R))
d = (C2(R) ∩ W 2,∞(R))d, hence f and

f ′ = (f ′
1, · · · , f

′
d) are globally Lipschitz continuous.

By (· , · ) we denote the standard L2(Ω)−scalar product and by ‖ · ‖ the L2(Ω)-
norm. By ‖ · ‖∞, we denote the L∞(Ω)-norm. For simplicity of notation, we shall
drop the argument Ω in Sobolev norms, e.g. ‖·‖Hp+1 denotes the Hp+1(Ω)-norm. We
shall also denote the Bochner norms over the whole interval [0, T ] in concise form,
e.g. ‖u‖L∞(Hp+1) denotes the L∞(0, T ;Hp+1(Ω))-norm.

2. Discretization

Let Th be a triangulation of Ω, i.e. a partition into a finite number of closed
simplexes with mutually disjoint interiors. We assume standard conforming proper-
ties: two neighboring elements from Th share an entire face, edge or vertex. We set
h = maxK∈Thdiam(K) .
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We consider a system {Th}h∈(0,h0), h0 > 0, of triangulations of the domain Ω
which are shape regular and satisfy the inverse assumption, cf. [2]. Let p ≥ 1 be an
integer. The approximate solution will be sought in the space of globally continuous
piecewise polynomial functions Sh = {v ∈ C(Ω); v|ΓD

= 0, v|K ∈ P p(K)∀K ∈ Th},
where P p(K) denotes the space of polynomials on K of degree ≤ p.

We discretize the continuous problem in a standard way. Multiply (1) by a test
function ϕh ∈ Sh, integrate over Ω and apply Green’s theorem.

Definition 1. We say that uh ∈ C1([0, T ];Sh) is the space-semidiscretized finite
element solution of problem (1)–(3), if uh(0) = u0

h ≈ u0 and

d

dt

(
uh(t), ϕh

)
+ b

(
uh(t), ϕh

)
= l

(
ϕh

)
(t), ∀ϕh ∈ Sh, t ∈ (0, T ). (4)

Here, we have introduced an approximation u0
h ∈ Sh of the initial condition u0

and the convective and right-hand side forms defined for v, ϕ ∈ H1(Ω):

b(v, ϕ) = −

∫

Ω

f(v)· ∇ϕ dx, l(ϕ)(t) =

∫

Ω

g(t)ϕ dx.

We note that a sufficiently regular exact solution u of problem (1) satisfies

d

dt

(
u(t), ϕh

)
+ b

(
u(t), ϕh

)
= l

(
ϕh

)
(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ), (5)

which implies the Galerkin orthogonality property of the error.

3. Key estimates of the convective terms

As usual in apriori error analysis, we assume that the weak solution u is suffi-
ciently regular, namely

u, ut ∈ L2
(
0, T ;Hp+1(Ω)

)
, u ∈ L∞(0, T ;W 1,∞(Ω)), (6)

where ut :=
∂u
∂t
. For v ∈ L2(Ω) we denote by Πhv the L2(Ω)-projection of v on Sh:

Πhv ∈ Sh, (Πhv − v, ϕh) = 0, ∀ϕh ∈ Sh.

Let ηh(t) = u(t)−Πhu(t) ∈ Hp+1(Ω) and ξh(t) = Πhu(t)− uh(t) ∈ Sh for t ∈ (0, T ).
Then we can write the error eh as eh(t) := u(t) − uh(t) = ηh(t) + ξh(t). By C
we denote a generic constant independent of h, which may have different values in
different parts of the text. Also, for simplicity of notation, we shall usually omit the
argument (t) and subscript h in ξh(t) and ηh(t). In our analysis, we shall need the
following standard inverse inequalities and approximation properties of η, (cf. [2]):

Lemma 1. There exists a constant CI > 0 independent of h s.t. for all vh ∈ Sh

|vh|H1 ≤ CIh
−1||vh||,

‖vh‖∞ ≤ CIh
−d/2‖vh‖.
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Lemma 2. There exists a constant C > 0 independent of h s.t. for all h ∈ (0, h0)

‖ηh(t)‖ ≤ Chp+1|u(t)|Hp+1,
∥∥∂ηh(t)

∂t

∥∥ ≤ Chp+1
∣∣∂u(t)

∂t

∣∣
Hp+1,

‖ηh(t)‖∞ ≤ Ch|u(t)|W 1,∞.

Lemma 3. There exists a constant C ≥ 0 independent of h, t, such that

b
(
uh(t), ξ(t)

)
− b

(
u(t), ξ(t)

)
≤ C

(
1 +

‖eh(t)‖∞
h

)(
h2p+2|u(t)|2Hp+1 + ‖ξ(t)‖2

)
. (7)

Proof. The proof follows the arguments of [5], where similar estimates are derived
for periodic boundary conditions or compactly supported solutions in 1D. The proof
for mixed Dirichlet-Neumann boundary conditions is contained in [4]. We write

b(uh, ξ)− b(u, ξ) =

∫

Ω

(
f(u)− f(uh)

)
· ∇ξ dx. (8)

By the Taylor expansion of f with respect to u, we have

f(u)− f(uh) = f ′(u)ξ + f ′(u)η −
1

2
f ′′u,uh

e2h, (9)

where f ′′u,uh
is the Lagrange form of the remainder of the Taylor expansion, i.e.

f ′′u,uh
(x, t) has components f ′′

s

(
ϑs(x, t)u(x, t)+(1−ϑs(x, t))uh(x, t)

)
for some ϑs(x, t) ∈

[0, 1] and s = 1, · · · , d. Substituting (9) into (8), we obtain

b(uh, ξ)− b(u, ξ) =

∫

Ω

f ′(u)ξ· ∇ξ dx

︸ ︷︷ ︸
Y1

+

∫

Ω

f ′(u)η· ∇ξ dx

︸ ︷︷ ︸
Y2

−
1

2

∫

Ω

f ′′u,uh
e2h· ∇ξ dx

︸ ︷︷ ︸
Y3

. (10)

We shall estimate these terms individually.
(A) Term Y1: Due to Green’s theorem and the boundedness of f ′′ and the regularity
of u, we have

∫

Ω

f ′(u)ξ· ∇ξ dx = −
1

2

∫

Ω

div
(
f ′(u)

)
ξ2 dx ≤ C‖ξ‖2.

(B) Term Y2: We define Π1
h : (L2(Ω))d → (S1

h)
d = {v ∈ (C(Ω))d; v|ΓD

= 0, v|K ∈
(P 1(K))d, ∀K ∈ Th}, the (L

2(Ω))d-projection onto the space of continuous piecewise
linear vector functions. From standard approximation results (similar to those of
Lemma 2, cf. [2]), we obtain

‖f ′(u)−Π1
h(f

′(u))‖∞ ≤ Ch|f ′(u)|W 1,∞ ≤ Ch‖f ′′‖L∞(R)|u|L∞(W 1,∞) = C̃h.
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Furthermore, due to the definition of η, we have
∫
Ω
Π1

h(f
′(u))· ∇ξ η dx = 0, since

Π1
h(f

′(u))· ∇ξ ∈ Sh. Therefore, by Lemmas 1, 2 and Young’s inequality

|Y2| =
∣∣∣
∫

Ω

(
f ′(u)− Π1

h(f
′(u))

)
· ∇ξ η dx

∣∣∣ ≤ ‖f ′(u)−Π1
h(f

′(u))‖∞CIh
−1‖ξ‖‖η‖

≤ C̃hCIh
−1‖ξ‖‖η‖ ≤ ‖ξ‖2 + Ch2p+2|u(t)|2Hp+1.

(C) Term Y3: We apply Lemmas 1, 2 and Young’s inequality:

|Y3| ≤ C‖eh‖∞‖eh‖CIh
−1‖ξ‖ ≤ Ch−1‖eh‖∞

(
Ch2p+2|u(t)|2Hp+1 + ‖ξ‖2

)
.

�

4. Error analysis of the semidiscrete scheme

We proceed similarly as for a parabolic equation. By Galerkin orthogonality, we
subtract (5) and (4) and set ϕh := ξh(t) ∈ Sh. Since

(
∂ξh
∂t
, ξh

)
= 1

2
d
dt
‖ξh‖

2, we get

1

2

d

dt
‖ξh(t)‖

2 = b
(
uh(t), ξh(t)

)
− b

(
u(t), ξh(t)

)
−

(∂ηh(t)
∂t

, ξh(t)
)
.

For the last right-hand side term, we use the Cauchy and Young’s inequalities and
Lemma 2 and Lemma 3 for the convective terms. We integrate from 0 to t ∈ [0, T ],

‖ξh(t)‖
2≤ C

∫ t

0

(
1+ ‖eh(ϑ)‖∞

h

)(
h2p+1|u(ϑ)|2Hp+1+h2p+2|ut(ϑ)|

2
Hp+1+‖ξh(ϑ)‖

2
)
dϑ, (11)

where C ≥ 0 is independent of h, t. For simplicity, we have assumed that ξh(0) = 0,
i.e. u0

h = Πhu
0. Otherwise we must assume e.g. ‖ξh(0)‖

2 ≤ Ch2p+1|u0|2Hp+1 and
include this term in the estimate.

We notice that if we knew apriori that ‖eh‖∞ = O(h) then the unpleasant term
h−1‖eh‖∞ in (11) would be O(1). Thus we could simply apply the standard Gronwall
lemma to obtain the desired error estimates. We state this formally:

Lemma 4. Let t ∈ [0, T ] and p ≥ d/2. If ‖eh(ϑ)‖ ≤ h1+d/2 for all ϑ ∈ [0, t], then
there exists a constant CT independent of h, t such that

max
ϑ∈[0,t]

‖eh(ϑ)‖
2 ≤ C2

Th
2p+1. (12)

Proof. The assumptions imply, by the inverse inequality and estimates of η, that

‖eh(ϑ)‖∞ ≤ ‖ηh(ϑ)‖∞ + ‖ξh(ϑ)‖∞ ≤ Ch|u(t)|W 1,∞ + CIh
−d/2‖ξh(ϑ)‖ (13)

≤ Ch + CIh
−d/2‖eh(ϑ)‖ + CIh

−d/2‖ηh(ϑ)‖ ≤ Ch+ Chp+1−d/2|u(ϑ)|Hp+1(Ω) ≤ Ch,

where the constant C is independent of h, ϑ, t. Using this estimate in (11) gives us

‖ξh(t)‖
2 ≤ C̃h2p+1 + C

∫ t

0

‖ξh(ϑ)‖
2 dϑ, (14)
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where the constants C̃, C are independent of h, t. Gronwall’s inequality applied
to (14) states that there exists a constant C̃T , independent of h, t, such that

max
ϑ∈[0,t]

‖ξh(ϑ)‖
2 +

1

2

∫ t

0

|ξh(ϑ)|
2
ΓN

dϑ ≤ C̃Th
2p+1,

which allong with similar estimates for η gives us (12). �

Now it remains to get rid of the apriori assumption ‖eh‖∞ = O(h). In [5]
this is done for an explicit scheme using mathematical induction. Starting from
‖e0h‖ = O(hp+1/2), the following induction step is proved:

‖enh‖ = O(hp+1/2) =⇒ ‖en+1
h ‖∞ = O(h) =⇒ ‖en+1

h ‖ = O(hp+1/2). (15)

For the method of lines we have continuous time and hence cannot use mathematical
induction straightforwardly. However, we can divide [0, T ] into a finite number of
sufficiently small intervals [tn, tn+1] on which “eh does not change too much” and use
induction with respect to n. This is essentially a continuous mathematical induction
argument, a concept introduced in [1], which has many generalizations, cf. [3].

Lemma 5 (Continuous mathematical induction). Let ϕ(t) be a propositional func-
tion depending on t ∈ [0, T ] such that

(i) ϕ(0) is true,

(ii) ∃δ0 > 0 : ϕ(t) implies ϕ(t+ δ), ∀t ∈ [0, T ] ∀δ ∈ [0, δ0] : t+ δ ∈ [0, T ].

Then ϕ(t) holds for all t ∈ [0, T ].

Remark 1 Due to the regularity assumptions, the functions u(· ), uh(· ) are con-
tinuous mappings from [0, T ] to L2(Ω). Since [0, T ] is a compact set, eh(· ) is a uni-
formly continuous function from [0, T ] to L2(Ω). By definition,

∀ǫ > 0 ∃δ > 0 : s, s̄ ∈ [0, T ], |s− s̄| ≤ δ =⇒ ‖eh(s)− eh(s̄)‖ ≤ ǫ.

Theorem 6 (Semidiscrete error estimate). Let p > (1 + d)/2. Let h1 > 0 be such

that CTh
p+1/2
1 = 1

2
h
1+d/2
1 , where CT is the constant from Lemma 4. Then for all

h ∈ (0, h1] we have the estimate

max
ϑ∈[0,T ]

‖eh(ϑ)‖
2 ≤ C2

Th
2p+1. (16)

Proof. Since p > (1 + d)/2, h1 is uniquely determined and CTh
p+1/2 ≤ 1

2
h1+d/2 for

all h ∈ (0, h1]. We define the propositional function ϕ by

ϕ(t) ≡
{
max
ϑ∈[0,t]

‖eh(ϑ)‖
2 ≤ C2

Th
2p+1

}
.

We shall use Lemma 5 to show that ϕ holds on [0, T ], hence ϕ(T ) holds, which is
equivalent to (16).
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(i) ϕ(0) holds, since this is the error of the initial condition.
(ii) Induction step: We fix an arbitrary h ∈ (0, h1]. By Remark 1, there exists
δ0 > 0, such that if t ∈ [0, T ), δ ∈ [0, δ0], then ‖eh(t+ δ)− eh(t)‖ ≤ 1

2
h1+d/2. Now let

t ∈ [0, T ) and assume ϕ(t) holds. Then ϕ(t) implies ‖eh(t)‖ ≤ CTh
p+1/2 ≤ 1

2
h1+d/2.

Let δ ∈ [0, δ0], then by uniform continuity

‖eh(t+ δ)‖ ≤ ‖eh(t)‖+ ‖eh(t+ δ)− eh(t)‖ ≤ 1
2
h1+d/2 + 1

2
h1+d/2 = h1+d/2.

This and ϕ(t) implies that ‖eh(s)‖ ≤ h1+d/2 for s ∈ [0, t] ∪ [t, t + δ] = [0, t + δ]. By
Lemma 4, ϕ holds on [0, t + δ]. As a special case, we obtain the “induction step”
ϕ(t) =⇒ ϕ(t+ δ) for all δ ∈ [0, δ0]. �

5. Conclusion

We have presented the basic ideas behind the apriori analysis of nonlinear convec-
tive problems. To keep things as simple as possible, we have presented the analysis
only for a space-semidiscrete scheme, with Dirichlet boundary conditions only. The
extension to mixed boundary conditions, the extension to implicit schemes via con-
tinuation, derivation of improved estimates under the assumption f ∈ (C3

b (R))
d and

the generalization to locally Lipschitz f ∈ (C2(R))d can be found in [4].

Acknowledgements

The work was supported by the project P201/11/P414 of the Czech Science
Foundation.

References

[1] Chao, Y.R.: A note on “Continuous mathematical induction”. Bull. Amer. Math.
Soc. 26 (1) (1919), 17–18.

[2] Ciarlet, P.G: The finite element method for elliptic problems. North-Holland,
Amsterdam, 1979.

[3] Clark, P. L.: Real induction, available online http://citeseer.ist.psu.edu/

viewdoc/summary?doi=10.1.1.187.3514.
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