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Abstract

Development of engineering structures and technologies frequently works with ad-
vanced materials, whose properties, because of their complicated microstructure, can-
not be predicted from experience, unlike traditional materials. The quality of com-
putational modelling of relevant physical processes, based mostly on the principles of
classical thermomechanics, is conditioned by the reliability of constitutive relations,
coming from simplified experiments. The paper demonstrates some possibilities of
computational identification of such relations, namely for heat and mass transfer,
coming from original experimental and numerical results obtained at the Brno Uni-
versity of Technology, in selected engineering applications.

1. Introduction

The analysis of inverse problems is a relatively new interdisciplinary field of
knowledge, connecting several theoretical and experimental branches: i) theory of
ordinary and partial differential equations, ii) development of robust and effective
computational algorithms, coming from the least squares, conjugate gradients, etc.
approaches – cf. [8], iii) handling unstable and ill-posed problems, needing construc-
tion of artificial regularizers, as discussed in [15], p. 26, iv) transparent physical
analysis, taking into account the most significant processes in engineering problems,
namely those motivated by the development of structures and technologies, working
with advanced materials, whose properties, because of their complicated microstruc-
ture, cannot be predicted from experience, unlike traditional materials, v) design of
experiments for reliable identification of mechanical, thermal, moisture, etc. charac-
teristics of such materials.

However, the general conception of inverse problems covers problems in nonde-
structive testing, seismic exploration, remote sensing, radio- and tomography, dis-
cussed in [15], p. 192, as well as the determination of an unknown source in the
heat equation thanks to some overdetermined values of temperature and heat fluxes
like [36]. In this paper we shall pay attention to the shorter list of inverse problems:
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from certain balance laws from classical thermomechanics, supplied by constitutive
relations, we shall try to determine the unknown or uncertain values of engineering
macroscopic characteristics occurring in such relations, thanks to some overdeter-
mined data, obtained by some well-advised experiments.

2. Physical and engineering considerations

Respecting the standard notation of Lebesgue, Sobolev, Bochner, etc. (abstract)
function spaces by [25], p. 14, we shall start with a model problem from classical ther-
momechanics: the conservation of a scalar quantity u ∈ L2(I, V ) with V = W 1,2(Ω)
on certain domain Ω in the Euclidean space R3 with the boundary Γ supplied by the
Cartesian coordinates x = (x1, x2, x3), and on some finite time interval I = [0, ς],
bounded by a constant ς, can be expressed, following [4], p. 9, in the form

ε̇(u) +∇ · η(u) = f on I × Ω ; (1)

dot symbols (here and later everywhere) refer to derivatives with respect to t ∈ I,
f ∈ L2(I,H) with H = L2(Ω) refers to some volume source and η : L2(I, V ) →
L2(I, V ) and ε : W 1,2(I,H)→ W 1,2(I,H) are certain material-dependent mappings;
for the example of conservation of energy with u taken as (absolute) temperature,
thermal fluxes η(u) and enthalpic (evolutionary) terms ε(u) see [25], p. 252. Let us
assume that Ω is sufficiently smooth to guarantee the validity of Sobolev imbedding,
trace and similar theorems by [25], p. 16, needed also in the Gelfand triple by [25],
p. 190; more general geometrical configurations could be studied (overcoming a lot
of technical difficulties) following [21], p. 62, 222 and 385. Let Γ be decomposed to
some disjoint parts Γc and Γi; consequently we are able to formulate the boundary
conditions of the Neumann type

η(u) · ν = g on I × Γc (2)

utilizing the (formally) outward unit normal ν(x) = (ν1(x), ν2(x), ν3(x)) on Γ, and
those of the Robin type

η(u) · ν = ψ(u, ua) on I × Γi ; (3)

here we need to know some ambient values ua ∈ L2((I, L4(Γc)), together with a new
(material) interface-dependent mapping ψ : L2(I, V × L4(Γc))→ L2(I, L2(Γi)). We
shall consider the initial u(., 0) = 0 on Ω here only; it can be verified that any
equilibrium initial condition can be converted to this form.

The much-favoured engineering linearizations of mappings included in (1), (2)
and (3) (prime symbols refer to derivatives by the following variables) are ε̇(u) =
ε′(u)u̇ ≈ κu̇ with some κ ∈ L∞(Ω), η(u) = −∇β(u) = −β′(u)∇(u) ≈ −λ∇u (in
the Fourier, Fick, . . . “laws”) with some λ ∈ L∞(Ω) and ψ(u, ua) ≈ γ(u − ua) with
some ψ : L2(I, V × L4(Γc)) → L2(I, L2(Γi)). Let us notice that even the exis-
tence of some β(u) represents an additional assumption: it forces the zero rotation
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Ω
known f , seeking for λ and κ

Γc
known g and also uc

(possible compensation of missing knowledge of λ, κ, γ)

Γi
known ua, seeking for γ

Figure 1: A simplified scheme of geometrical configuration for a model problem.

of η(u). Moreover, such scalar characteristics are admissible just for (macroscopi-
cally) isotropic media; in more general cases matrix characteristics are necessary.

Fig. 1 shows the above sketched geometrical configuration. To enable the effective
analysis with some unknown or uncertain characteristics, some uc ∈ L2(I, L2(Γc)) is
prescribed, too, considered to coincide with the traces of u.

For simplicity, we shall introduce the following notation of scalar products in
L2(I,X), with (generalized) functions φ and φ̃ from corresponding spaces, i. e. X =
L2(Ω), X = L2(Ω)3, X = L2(Γ),

(φ, φ̃) =

∫
I

∫
Ω

φ(x)φ̃(x) dx dt , (∇φ,∇φ̃) =

∫
I

∫
Ω

∇φ(x) · ∇φ̃(x) dx dt ,

〈φ, φ̃〉 =

∫
I

∫
Γ

φ(x)φ̃(x) ds(x) dt ,

with s(x) in the sense of Hausdorff measure on Γ; 〈φ, φ̃〉i, 〈φ, φ̃〉c will denote the same

as 〈φ, φ̃〉, with Γi, Γc instead of Γ. Such scalar products are available because X are
still Hilbert spaces; some appropriate dualities can be considered instead of them in
more general considerations.

The significance of particular physical (and chemical and other) processes de-
pends on engineering applications. In particular, in civil engineering the following
processes come into consideration: i) heat transfer (conduction, convection, radia-
tion), ii) air flow, iii) moisture redistribution in porous media, iv) salt and contami-
nant transport, v) chemical reactions (maturing silicate mixtures, carbonation, . . . ),
vi) phase changes (including those in advanced phase change materials), vii) me-
chanical deformation (elasticity, plasticity, creep, damage, . . . ). The above sketched
thermomechanical approach generates the balance conditions for a) mass (continuity
equations) - with variable density, b) (linear and angular) momentum (Navier - Stokes
equations, formulated for various continuum models: by Boltzmann, Cosserat, etc.)
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- with variable velocity components (in some reference geometrical configuration),
c) energy (Fourier equation) - with variable temperature, d) (semi-)empirical con-
stitutive laws for remaining quantities, separately for particular phases. Bridging
between micro- and macrostructure could be performed using some periodic homog-
enization approach, e. g. the two-scale convergence by [7], or its non-periodic (much
more complicated) generalization by [12]; nevertheless, most engineering approaches
rely on the mixture theory. Such “multiphysical” analysis dates back to the simple
Luikov model, presented in [20], of the simultaneuos heat and moisture transfer,
coming to the system of 2 equations of evolution

τ̇ = ∆τ +Kω̇ , ω̇ = L∆ω + LP∆τ

for 2 unknown functions: the temperature τ(x, t) and the moisture content ω(x, t);
3 material characteristics (positive constants) L, P , K are well-known as Luikov, Pos-
nov and Kossovich numbers. Its slight generalization works with the corresponding
fluxes

ητ = (.)∇τ + (.)∇ω , ηω = (.)∇τ + (.)∇ω
and the deeper analysis of material characteristics in all (.) positions; then the first
equations handles the so-called Dufour effect, the second equation the so-called Soret
one. Much more generalized computational models have been supported by the
computer hardware and software development in the last decades: e. g. the model
of maturing concrete mixture from [33], referring to the approach of [14], contains
20 equations of evolution, coming from the conservation of mass, momentum and
energy related to 4 phases, supplied by appropriate algebraic constitutive relations;
the hydration degree, driving the fraction of particular phases must be evaluated
from an auxiliary ordinary differential equation.

3. Experimental settings

Unlike complicated advanced “multiphysical” models for direct deterministic cal-
culations, all identification procedures try to arrange necessary measurements under
very special conditions, i) to remove or suppress most other influences disturbing
a separate physical process by (1), ii) to simplify the geometrical configuration to
reduce the complexity of the mathematical and computational analysis, e. g. by the
reduction of dimension, thanks to various symmetries, iii) to have a chance to per-
form some reasonable a posteriori uncertainty analysis. An example of such simple
inexpensive measurement equipment for the identification of the thermal conduc-
tivity λ and of the thermal capacity (related to unit volume) κ, assuming γ = 0, is
shown on Fig. 2. The controlled heat flux, accompanied by the temperature recorder,
supplies all information, needed by Fig. 1. Moreover, for sufficiently large plates the
one-dimensional simplification (at least for the first estimate of λ and κ) by [27] is
available. However, the proper analysis in R3 leads to rather complicated relations:
even in the case of exploitation of analytic integrals by [3], p. 193, their numerical
evaluation may be not quite easy.
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Figure 2: Measurement equipment of the hot-plate type: 1 massive polystyrene
insulation layer, 2 couple of aluminium plates: lower heated, upper cold, 3 sample
with unknown λ and κ, 4 direction of controlled heat fluxes, 5 temperature sensor(s),
6 temperature recorder.

Other technical solutions of measurement systems than the just presented hot-
plate one are known as the hot-ball and hot-wire ones – see [1]. The hot-ball approach
works with a sufficiently small heated metal ball, utilizing the spherical coordinates
for all computational evaluations, the hot-wire one with a very thin and long heated
metal wire, utilizing the cylindric coordinates. In some laboratory settings, namely
under hard conditions, as for the testing of fire-clay brickworks, or for the alterna-
tive design of powdery insulation materials at high temperature and in vacuum, as
an important component of certain heat production and storage system based on
sunlight and optical fibers, some modifications are needed, in particular the (nearly)
ideal thin hot wire has to be replaced by some massive hollow (ceramic or metal)
cylinder, as shown on Fig. 3; for more details see [16].

Especially in the case of elevated or high temperature, in maturing concrete mix-
tures, during the fire simulation, etc., the factors λ and κ are not constant; as an
illustrative example, the lower part of Fig. 3 shows λ for selected powdery insula-
tions (aerogel, perlite, crashed fire clay and certain experimental nano-particles-based
material) as a (not very rapidly) increasing function of temperature. Relevant exper-
iments can be organized in several steps at some discrete environmental temperature
levels; the contribution of additional thermal fluxes generated by the measurement
equipment can be considered as negligible. However, such approach is not practicable
in the case of the capillary transfer coefficient λ where (1) describes the conservation
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τ ∇τ η(τ)

Figure 3: From the left: i) high-temperature cylindric measurement equipment,
ii) small model of the thermal accumulator, iii) results of supporting ANSYS-based
computations for the evaluation procedure on a cylindric segment, due to service
wires. Lower graph: temperature dependence of the thermal conductivity for selected
types of powdery insulations.

of moisture mass in some porous material structure (κ = 1 can be set without loss of
generalization) because all experiments show strong dependence of such coefficient
on the moisture volume fraction u, thus the tricks with simple functions (like the
preceding case) are not adequate. Moreover, to prevent the lack of input data for the
identification procedure, the knowledge of values u is needed on Ω or its substantial
part, not only on its boundary. Consequently no direct and nondestructive mea-
surements are available; a reasonable compromise may be the indirect measurement
exploiting the microwave technique, based on the difference between (relative) elec-
tric permittivity and/or magnetic permeability of water and air in pores, as sketched
on Fig. 4; for more details on laboratory measurements including calibration tech-
niques see [26].
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Figure 4: Indirect nondestructive microwave measurement of water content in porous
material structure for the identification of the capillary transfer coefficient.

4. Linear and quasilinear problems

As evident from the previous section, we shall work with the set of (in general
a priori unknown) characteristics ϑ = (γ, λ, κ) in appropriate admissible sets of
(usually positive) functions.

Following [35] and [17], according to [5], p. 135, let us introduce two functionals

F (ϑ, u, v) = (κu̇, v) + (λ∇u,∇v) + 〈γ, uv〉i − (f, v)− 〈g, v〉c − 〈γ, uav〉i ,

G(u) =
1

2
〈w, (u− uc)2〉c ,

supplied by certain weight w ∈ L2(Γc), defined for arbitrary t ∈ I, for u, v ∈ L2(I, V );
consequently u, v ∈ L2(I, L4(Γ)) and uv ∈ L2(I, L2(Γ)). This requires the applica-
tion of the trace theorem; moreover the Sobolev theorem on (compact) imbedding,
the Friedrichs - Poincaré inequality, the Lax - Milgram theorem (and its generaliza-
tions), the properties of Rothe sequences of abstract functions (continuous and dis-
crete Gronwall lemma, Gelfand imbedding, . . . ), the Aubin - Lions lemma for abstract
functions, etc. (cf. [25] and [13]), are needed in the complete proofs of the following
propositions.

Now we are ready to formulate a) a direct model problem, b) a sensitivity one and
c) an adjoint one, useful namely in linearized considerations, including those with
slightly variable material characteristics (due to the motivation from the preceding
section). Such formulations will be useful for the design of a general algorithm for
the analysis of an inverse problem, i. e. the problem of identification of ϑ = (γ, λ, κ)
here. Some particular cases may occur in the literature typically: e. g. [17] takes
variable γ only, moreover in the steady-state case.
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4.1. A direct problem

The weak formulation of a direct problem reads: for some fixed β and u0 = 0
find u such that F (ϑ, u, v) = 0 for any v, i. e.

(κu̇, v) + (λ∇u,∇v) + 〈γ, (u− ua)v〉i = (f, v) + 〈g, v〉c ,

valid for any t ∈ I (here and in all analogous situations). Its strong formulation
comes from the obvious application of the Green - Ostrogradskǐı theorem

(κu̇−∇ · (λ∇u)− f, v) = 〈γ(ua − u)− λ∇u · ν, v〉i + 〈g − λ∇u · ν, v〉c .

However, the reverse application of the same theorem is possible, too; e. g. for the
fundamental solution v∗(x, y) = −1/(4π|x−y|) of the equation ∆v∗(x, y) = 4πδ(x−y)
locally for y ∈ Ω instead of v(x, t) with fixed t ∈ I we obtain

(κu̇, v)− (β(u),∆v) = (f, v) + 〈γ, (u− ua)v〉i + 〈g, v〉c − 〈β(u),∇v · ν〉

Let us remind that generalized initial conditions are also available: there is sufficient
to take f − f0, g − g0, ua − ua0 and u − u0 instead f , g, ua and u where all zero
indices refer to values in t = 0; the same could be done for sensitivity and adjoint
problems, too.

4.2. A sensitivity problem

The weak formulation of a sensitivity problem reads: for some fixed ϑ, ϑ̃ (ex-

pressing some change of ϑ) and u0 = 0 find ũ such that DF (ϑ, u, v, ϑ̃, ũ, o) = 0, with
o referring to zero-valued functions, for any v, i. e.

(κ ˙̃u, v) + (λ∇ũ,∇v) + 〈γ, ũv〉i = 〈γ̃, (ua − u)v〉i − (λ̃∇u,∇v)− (κ̃u̇, v) .

Its strong formulation comes from the obvious application of the Green - Ostrogradskǐı
theorem

(κ ˙̃u−∇ · (λ∇ũ)−∇ · (λ̃∇u), v)

= 〈γ̃(ua − u)− γũ− λ∇ũ · ν − λ̃∇u · ν, v〉i − 〈λ∇ũ · ν + λ̃∇u · ν, v〉c .

The reverse application of the Green - Ostrogradskǐı theorem gives here

(κ ˙̃u, v)−(β(ũ)+ β̃(u),∆v)+〈γ, ũv〉i = 〈γ̃, (ua−u)v〉i−〈κ̃u̇, v〉−〈β(ũ)+ β̃(u),∇v ·ν〉 .

4.3. An adjoint problem

The weak formulation of an adjoint reads: for some fixed ϑ and uς = 0 find v
such that DF (ϑ, u, v, o, ũ, o) = DG(u, ũ) for u coming from a direct problem and for
any ũ, i. e.

−(κũ, v̇) + (λ∇ũ,∇v) + 〈γ, ũv〉i
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Its strong formulation comes from the obvious application of the Green - Ostrogradskǐı
theorem

−(ũ, κv̇ +∇ · (λ∇v)) = 〈ũ, w(u− uc)− λ∇v · ν, 〉c − 〈ũ, γv + λ∇v · ν〉i .

The reverse application of the Green - Ostrogradskǐı theorem gives here

−(ũ, κv̇)− (∆β(ũ), v) + 〈γ, ũv〉i = 〈w, (u− uc)ũ〉c − 〈∇β(ũ) · ν, v〉 .

Combining ũ from a sensitivity and v from an adjoint problem, we receive

〈w, (u− uc)ũ〉c = 〈γ̃, (ua − u)v〉i − (λ̃∇u,∇v)− (κ̃u̇, v) ;

thus it is natural to introduce a new functional

J(ϑ) =

∫
I

G(u)dt .

4.4. Computational algorithms

For simplicity of notation, let us set J∗(γ) = J(ϑ) here, in particular with ϑ =
(γ, o, o); the analogous derivation of the general case is left to the (very patient)
reader. Then we shall need some reasonable estimate γ0 for the construction of
iterations γk with k ∈ {1, 2, . . .}, the evaluation of gradients Gk = (uk(γk) − ua)vk
and differentials DJ∗(γ

k, γ̃k) = 〈γ̃k,Gk〉i, D2J∗(γ
k, γ̃k, γ̃k) = 〈w, ũ(γk, γ̃k)2〉c. The

conjugate gradient algorithm, following [2], can be expressed in the form

γk+1 = γk + akγ̃k ,

γ̃k = bkγ̃k−1 − Gk , in particular γ̃0 = 0 (b1 is not needed) ;

ak come from the minimum line search with the result

ak = −DJ∗(γk, γ̃k)/D2J∗(γ
k; γ̃k; γ̃k) ,

whereas bk are generated by the Fletcher - Reeves formula

bk = 〈Gk,Gk〉i/〈Gk−1,Gk−1〉i ,

the Dai - Yuan formula

bk = 〈Gk,Gk〉i/〈γ̃k−1,Gk − Gk−1〉i ,

or some similar one; for the discussion of suitable choice of such formulae see [23]
and [29]. Especially for an assumed constant γ on Γi this degenerates to the classical
Newton algorithm.

Now the complete computational strategy depends on the choice of number of
iterations for γk, λk and κk separately. However, λk and κk, defined on Ω, may
suffer from the lack of data, namely in the case of their rather rich admissible sets;
therefore some modification of this approach could be needed. Certain remedy will
be recommended in the sixth section.
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5. Stochastic generalizations

To obtain J(ϑ) ≈ 0 in the previous section is quite not realistic; this depends
not only on the quality, efficiency and robustness of the above presented purely
deterministic algorithm, but also on the stochastic character of data, influence of
disturbing physical processes and measurement imprecisions. However, sources of
such errors cannot be distinguished, which restrains the validity of identification
results; moreover, most technical standards on the laboratory testing require to sub-
mit some uncertainty analysis. Thus it could be useful to generalize all deterministic
formulations to stochastic ones, although a lot of difficulties, including that in the
mathematical verification (as the absence of simple imbedding and similar theorems
for proofs), must be expected.

In general, instead of the spaces of abstract functions of the type L2(I,S) with S
taken as V , L2(Ω), etc., we are able, following [35], to define the spaces L2(Θ, I,S)
where Θ refers to a space of elementary events, supplied with some σ-algebra and
some probability measure P . Our optimization functional then obtains a new pa-
rameter θ ∈ Θ, i. e.

J∗(γ) =
1

2

∫
Θ

∫
I

∫
Γc

w(x, θ)(u(x, t, θ)− uc(x, t, θ))2 ds(x) dt dP .

Various approaches to the mimimization of such (or similar) functional can be
then found in the literature, e. g. i) [22] applies the Karhunen - Loève spectral ex-
pansion, or, alternatively, the expansion based on the Hermitean polynomial chaos,
which leads to the stochastic finite element technique, ii) [34] prefers the Bayesian
approach, with Markov chains and Monte Carlo simulations, iii) a quite different
algorithm comes from the Sobol sensitivity analysis by [19], relying on Monte Carlo
simulations again. Nevertheless, the common drawbacks of such analysis, in addition
to the above mentioned difficulties in functional and numerical analysis, are numer-
ous artificial regularization tricks, as the Tikhonov regularization by [36], absence
of appropriate software tools oriented to engineering applications and exceedingly
time-consuming and expensive computations.

6. Nonlinear problems

Regardless of the formal similarity of mass and energy balance equaitions, as well
as of the linearized Fourier and Fick constitutive equations, typical material char-
acteristics for diffusion of liquid water, water vapour and various contaminants are
much more complicated than those from the heat transfer with dominated conduc-
tion, discussed in [31] – all results depend on material microstructure (not only on
such macroscopic characteristics as volume fraction of pores) significantly, diffusion
is typically not quite reversible, etc. Consequently the approach from the fourth sec-
tion do not lead to any credible results for engineering simulations. As a motivation
from an useful modification of such approach, we shall come from the experimental
tool sketched on Fig. 4.
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Let us start, following [25], p. 253, with some useful transforms and substitutions,
namely with the enthalpic and Kirchhoff transformations by [31] (for various right-
hand sides)

κ(u)u̇−∇ · (λ(u)∇u) = . . .

κ̂(u(r)) =

∫ r

0

κ(ρ) dρ , λ̂(u(r)) =

∫ r

0

λ(ρ) dρ , β(u) = λ̂(κ̂−1(u)) ,

consequently

U̇ −∆β(U) = . . .

for the (adroitly defined) enthalpy U = κ̂(u). For simplicity, in all remaining consid-
erations we shall take only κ(u) = 1, zero f and empty Γi.

For an effective computation, the natural requirements are: i) u ≈ u∗ on some
set Ω∗ ⊆ Ω with meas(Ω∗) > 0, with measured u∗-values, to avoid lack of data,
ii) introduction of

G(u) =
1

2
(u− u∗, w(u− u∗))

with some weight w ∈ L∞(Ω∗), zero-valued outside Ω∗ iii) local estimates of β(.)
or λ(.), coming from the direct formulation. For sufficiently smooth β(.) we are then
able to perform obvious conversions

∇β(u) = β′(u)∇(u) = λ(u)∇u ,

∆β(u) = ∇ · ∇β(u) = ∇ · (λ(u)∇u) = λ′(u)∇u · ∇u+ λ(u)∆u .

The weak formulation of a direct problem reads: for some fixed ϑ and u0 = 0
find u such that F (β, u, v) = 0 for any v, i. e.

(u̇, v) + (∇β(u),∇v) = 〈g, v〉 .

Its strong formulation comes from the obvious application of the Green - Ostrogradskǐı
theorem

(u̇−∆β(u), v) = 〈g −∇β(u) · ν, v〉 , (4)

or from its alternative form (with λ instead of β)

(u̇− λ′(u)∇u · ∇u− λ(u)∆u, v) = 〈g −∇β(u) · ν, v〉 . (5)

The analysis of solvability of (4) can be done by [25], p. 239. The analogous (not
quite general) analysis of (5) in [24] needs non-trivial regularity results from [13]
and auxiliary lemmas from [10]. The reverse application of the Green - Ostrogradskǐı
theorem gives here

(u̇, v)− (β(u),∆v) = 〈g, v〉 − 〈β(u),∇v · ν〉 .
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Most authors do not distinguish between u and u∗ at all, inserting u∗ (if avail-
able) instead of u into all calculations. To identify a function β(u), some decom-
position (finite-dimensional in practical calculations) is needed. The standard one
is β(u) = ciβi(u) where the sum over i ∈ {1, 2, . . .} (due to the Einstein sum-
mation rule) is considered for prescribed functions βi(u) and unknown real co-
efficients ci. However, [6], p. 62, develops another approximate method where
Mi = {(x, t) ∈ Ω × I : λi−1 ≤ λ(u(x, t)) ≤ λi}, λi(u) = (λi−1 + λi)/2 and
ci = meas(Mi), utilizing a priori given constants λ0, λ1, . . ., as a basis for the double
integration method by [9].

Some explicit formulae for the evaluation of λ(u) can be found in the litera-
ture, coming from the one-dimensional simplification on a half-line (for a theoreti-
cally infinite sample). The most celebrated result, based on the Boltzmann - Matano
transformation y = x/(2

√
t) (generating an ordinary differential problem in y), is

λ(u(x, t)) =
1

2tu′x(x, t)

∫ ∞
x

ξu′ξ(ξ, t) dξ ; (6)

for various modifications of this formula and for the historical remarks see [18]. As
shown in [32] (including an original software code in MATLAB), infinite integrals
in (6) can be removed for the prescribed boundary flux g (from direct measurements)
with the result

λ(u(x, t)) =
1

u′x(x, t)

(∫ x

0

u̇(ξ, t) dξ − g(t)

)
.

Another modification of (6)

λ(u(x, t)) = − 1

u′x(x, t)

∫ ∞
x

u̇(ξ, t) dξ

is presented as the third integration method in [28].
General estimates of β(.) or λ(.) from three-dimensional experimental data are

more delicate, utilizing some (numerically unpleasant) Dirac distributions δ(.) in
most cases. The second integration method by [28] comes from the equation of type

(u̇− λ′(u)∇u · ∇u− λ(u)∆u, v) = . . .

for v = δ(x− ξ)δ(t− ι), ξ ∈ Ω and ι ∈ I. Consequently

λ′(u)∇u · ∇u+ λ(u)∆u = u̇

remains on Ω×I; this can be solved (unlike a direct nonlinear problem) as one linear
ordinary differential equation. The first integration method by [28] considers

(u̇, v)− (β(u),∆v) = . . .

for v(x, t) = v∗(x, ξ)δ(t− ι); the integration then gives

β(u(x, t)) = − 1

4π

∫
Ω

u̇(ξ, t)

|x− ξ|
dξ
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locally. In the above announced double integration method it is sufficient to choose
v = δ(x− ξ)δ(t− ι) with ξ ∈ Ω and ι ∈ I in

(u̇−∇ · (λ(u)∇(u)), v) = . . . ;

however, Mi for i ∈ {1, 2, . . .} must be (approximately) detected from the analysis
of isohypersufaces u(x, t), consequently the integration over Ω × I is needed to de-
termine ci (which is extremely expensive for any two- ore more-dimensional case).
An alternative approach of [6], p. 67, then relies on some special genetic algorithms;
for still other alternative optimization approaches cf. [8].

Let us consider c = (c1, c2, . . .) (and later also c̃ = (c̃1, c̃2, . . .)). A direct, sen-
sitivity and adjoint problem can be now formulated similarly to the fourth section
here; we shall present the weak formulations only. For a direct problem this reads:
for some fixed c = (c1, c2, . . .) and for u0 = 0 find u such that F (c, u, v) = 0 for
any v, i. e.

(u̇, v) + (∇βi(u),∇v)ci = 〈g, v〉 .

For a sensitivity problem this reads: for some fixed c and c̃ and for u0 = 0 find ũ
such that DF (c, u, v, c̃, ũ, o) = 0 for any v, i. e.

( ˙̃u, v) + (∇βi(ũ),∇v)ci = (∇βi(u),∇v)c̃i .

For an adjoint problem this reads: for some fixed c and for uς = 0 find v such that
DF (c, u, v, o, ũ, o) = DG(u, ũ) for u from a direct problem and for any ũ, i. e.

−(ũ, v̇) + (∇βi(ũ),∇v)ci = (w(u− u∗), ũ) .

Combining ũ from a sensitivity and v from an adjoint problem, we receive

(∇βi(u),∇v)c̃i = (w(u− u∗), ũ) ;

J(c) = G(u) can be introduced.
The conjugate gradient algorithm, starting from certain initial estimate c0 of

c, works with iterations ck for k ∈ {1, 2, . . .}, gradients Gk = (uk(ck) − u∗)v
k and

differentials DJ∗(c
k, c̃k) = (c̃k,Gk), D2J∗(c

k, c̃k, c̃k) = (wũ(ck, c̃k), ũ(ck, c̃k)). This
leads to the algorithm

ck+1 = ck + akc̃k ,

c̃k = bkc̃k−1 − Gk , in particular c̃0 = 0 (b1 is not needed)

again; here

ak = −DJ∗(ck, c̃k)/D2J∗(c
k; c̃k; c̃k) , bk = (wGk,Gk)/(wGk−1,Gk−1),

with possible alternatives for the evaluation of bk again.
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7. Conclusion

The increase of requirements from engineering practice to reliable analysis of
inverse problems, namely on identification of material characteristics in thermody-
namical applications, discussed in this paper, due to advanced materials, structures
and technologies, seem to be faster than the progress in analysis of existence of their
(unique) solutions, of (global) convergence of sequences of approximate solutions in
finite-dimensional spaces, etc. Even the variety of (often ad hoc) computational al-
gorithms documents the absence of a general, inexpensive and robust one, working
for a large class of experimental settings. Clearly this is a strong motivation for
further research – maybe following the way predicted by [11]: i) overreaction to im-
mature technology (naive euphoria), ii) frustration (cynicism), iii) true user benefits
(realistic expectation), with certain asymptote of reality.
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