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Abstract

The numerical solution of granular dynamics problems with Coulomb friction leads
to the problem of minimizing a convex quadratic function with semidefinite Hessian
subject to a separable conical constraints. In this paper, we are interested in the
numerical solution of this problem. We suggest a modification of an active-set optimal
quadratic programming algorithm. The number of projection steps is decreased by
using a projected Barzilai-Borwein method. In the numerical experiment, we compare
our algorithm with Accelerated Projected Gradient method and Spectral Projected
Gradient method on the solution of a particle dynamics problem with hundreds of
spherical bodies and static obstacles.

1. Time-stepping scheme and formulation of optimization problem

In our simulation, we consider a system of nb ∈ N particles in vector space
{(x, y, z) ∈ R

3}. The position of each particle in time t is defined by the vector

of generalized position q
(t)
i ∈ R

7, which consists of the position of the centre of
gravity [rx, ry, rz]

T and the unit quaternion of rotation [e0, e1, e2, e3]
T . The velocity

of the body is defined by the vector of generalized velocities v
(t)
i ∈ R

6, it includes
the velocity corresponding to the position of the centre of the body and angular
velocities represented in Euler angles.

We use the well-known time-stepping scheme, see Heyn [9] or Heyn et al. [10]

q(t+h) = q(t) + hQv(t) ,
v(t+h) = v(t) + hM−1(F ext + F C) ,

(1)

where h is a time step, Q denotes the matrix of linear mapping between the derivative
of the position vector and the vector of velocities, M is a generalized mass matrix,
F C is a vector of forces induced by contact constraints, and F ext is a vector of external
forces. In our simulation, the vector of external forces represents the gravity force
applied to each body.
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Let us denote the number of contacts by m ∈ N∪{0}. The contact force applied
to each body can be separated into the sum of the normal force and the tangential
force, i.e.,

F C = F n + F T = γnn+ γuu+ γww ,

where γn > 0 is the size of the normal component of the friction force, and γu, γw ∈ R

are the sizes of the tangential components of the friction force. Here, {n,u,w} is
an orthonormal basis of the tangential space at the contact point. The relation
between the components of γj := [γn, γu, γw] for j-th contact (j = 1, . . . , m) can be
described by the Coulomb friction model. The unknown vector of all components
in all contacts can be denoted by γ := [γ1, . . . ,γm] ∈ R

3m and can be found by
solving the problem of minimizing a convex quadratic function subject to separable
conical constraints (see Heyn [9]). The proof of equivalency is based on the maximum
dissipation principle and duality.

The optimization problem is given by

find γ := argmin
x∈Ω

f(x), f(x) :=
1

2
xTAx− bTx , (2)

where A ∈ R
3m,3m is a symmetric positive semidefinite matrix, b ∈ R

3m, and Ω ⊂ R
3m

is a non-empty convex feasible set defined by separable conical constraints

Ω := {x ∈ R
3m : hj(x2j−2, x2j−1, x2j) ≤ 0, j = 1, . . . , m} ,

where hj : R
3 → R are conical constraints functions

hj(x, y, z) :=
√

y2 + z2 − µjx, j = 1, . . . , m ,

and µj ≥ 0 are given friction coefficients that define the interior angles of cones. Let
us notice, that if we consider the problem without friction, then µj = 0, and the
optimization problem (2) becomes a quadratic programming problem with bound
constraints.

For the sake of simplicity we denote the triplet of compoments of x ∈ R
n con-

strained by j-th constraint function using the notation of index sets

Ij := {3j − 2, 3j − 1, 3j},

m
⋃

j=1

Ij = {1, . . . , n}, j = 1, . . . , m .

2. Active-set method

For numerical solution of the problem (2), we are using the variant of Mod-
ified Proportioning with Gradient Projection (MPGP), see Dostál [5] and Dostál
et al. [7, 4], or Posṕı̌sil [12]. This active-set algorithm is based on the decomposition
of the set of all constraint indices M := {1, . . . , m} into two disjoint subsets based
on the values of constraint functions

F(x) := {j ∈ M : hj(xIj
) < 0} ,

A(x) := {j ∈ M : hj(xIj
) = 0} .
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The gradient of the objective function g := ∇f(x) = Ax − b ∈ R
n can be used to

define the free and the chopped gradient with components

ϕIj
(x) = gIj

for j ∈ F(x), ϕIj
(x) = 0 for j ∈ A(x),

βIj
(x) = 0 for j ∈ F(x), βIj

(x) = gIj
−min{nT

j (xIj
)gIj

, 0}nj(xIj
)

for j ∈ A(x),

where nj(x, y, z) is the unit outer normal of j-th constraint hj(x, y, z). We consider
a problem with conical constraints, so outer normal is given by

nj(x, y, z) :=

{

[−1, 0, 0]T if x = y = z = 0 ,
[

−µj , y/
√

y2 + z2, z/
√

y2 + z2
]T

elsewhere.

Algorithm 1: Modified Proportioning with Barzilai-Borwein Gradient Pro-
jection (MPGPS-BB).

Choose x0 ∈ Ω
for k = 0, 1, 2, . . . (while a stopping criterion is not achieved)

if ‖ϕ(xk)‖ ≥ ‖β(xk)‖ (proportioning condition)

Control the solvability
if min{αf , αcg} = ∞, then the problem has no solution.

CG step or CG halfstep
make one CG step to solve problem on free set
if this step means leaving Ω, do only a half-step and restart CG

else

Gradient projection step.
make projected Barzilai-Borwein step
restart CG on free set

endif

k := k + 1

endfor

Our algorithm is based on using the free and chopped gradient to minimize the
objective function on the free set and afterwards on the active set. The switching
between these processes is realized by the proportioning condition. The implementa-
tion details of each step are the same as in the original Modified Proportioning with
Gradient Projections algorithm (MPGP) in Dostál [5], Dostál et al. [7, 4]. Neverthe-
less, MPGP was developed to solve the problems with a symmetric positive definite
Hessian matrix. The recent generalization to the problems with symmetric posi-
tive semidefinite Hessian suggests only one difference from the original algorithm,
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specifically a test of the problem solvability, see Algorithm 1. The coefficient αf

is the maximal feasible step-size and αcg is a coefficient of the conjugate gradient
computed from the free gradient. If both of these coefficient are equal to infinity,
then the problem has no solution. The theory will be published in [6].

To solve a problem with separable conical constraints, we suggest to use the
projected version of Barzilai-Borwein method [2] instead of the projected gradient
method with constant step-length as in original MPGP algorithm. Constant step-
length always induces the descend of cost function, as it was shown by Dostál and
Schöberl [8]. However, the numerical experiments show that using non-monotone
algorithms, such as projected Barzilai-Borwein (PBB) given by

xk+1 = PΩ(x
k − αBB

k ∇f(xk)), αBB
k =

sTk sk

sTkAsk
, sk = xk − xk−1,

usually evokes the decrease of the projection steps number. This modification was
inspirated by the Spectral Projected Gradient method (SPG), which uses the similar
type of steps, see Birgin et al. [3]. The idea of the combination of MPGP and
PBB was firstly presented by Posṕı̌sil [12] and tested on the problem with separable
quadratic constraints.

The main shortage of the presented MPGPS-BB algorithm is the absence of the
proof of convergence. The PBB method is non-monotone and hardly analyzable.
Therefore, the SPG method is using an additional line-search method to control the
descend of the objective function, i.e. the global convergence. In our algorithm, we
tried to omit this line-search. Our idea is well-founded by the numerical experiment
presented in the final section of this paper.

As a stopping criterion in our algorithm, we are using the norm of the scaled
projected gradient defined by

g̃P
α (x) :=

1

α
(x− PΩ(x− α∇f(x))) .

The equivalency of this gradient and the fulfilment of Karush-Kuhn-Tucker optimal-
ity conditions for problems with feasible sets with strong curvature was discussed
and proved by Bouchala et al. [4].

3. Numerical experiments

In this section, we present the numerical results showing the efficiency of our
algorithm on the simulation of 339 spherical particles with friction. In our bench-
mark, the particles are scattered into simple box represented by six walls. The initial
position of the partices and final position can be found in Fig. 1, where we depicted
only the partices and the bottom side of the static box. The material of the bodies is
represented by density ρ = 730 kg.m−3 and friction parameter µ = 0.3. The stepsize
of the time-stepping scheme is h = 6.25 · 10−4 s.
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Figure 1: State of testing benchmark at t = 0s (left) and t = 5s (right).

t contacts n active MPGPS-BB SPG APGD

1s 738 2214 562 (76%) 274 (7.6s) 2360 (37.8s) 754 (9.4s)
2s 702 2106 574 (82%) 137 (3.4s) 449 (6.0s) 346 (2.9s)
3s 730 2190 558 (76%) 137 (3.7s) 449 (6.0s) 346 (4.1s)
4s 814 2442 640 (79%) 338 (9.9s) 2931 (56.2s) 1345 (18.9s)
5s 818 2454 652 (80%) 425 (12.3s) 4176 (88.0s) 1742 (25.6s)

Table 1: The optimization problems at selected times of the simulation; number of
contacts, dimension of the problem, the number of iterations and computing time of
the algorithms.

We compare our algorithm with SPG and the Accelerated Projected Gradient De-
scend method (APGD [11]). In SPG, because the minimum of the quadratic function
in a given direction is known, we use the Cauchy step-size instead of using an ad-
ditional Grippo-Lampariello-Lucidi line-search. All algorithms were implemented in
the Matlab environment. For contact detection, we are using our own implemen-
tation of the Moving Bounding-Box algorithm [13]. The number of iterations at
selected times of the simulation can be found in Table 1. We demand the relative
stopping tolerance ‖g̃P

α (x)‖ < ǫ‖b‖, ǫ = 10−6.

4. Conclusions

In our paper, we proposed the modification of our active-set algorithm for the
solution of optimization problem in particle dynamics with friction. Our numeri-
cal experiment shows the efficiency of the modifications. Unfortunately, the basic
disadvantage of using the projected Barzilai-Borwein method is the absence of a con-
vergence proof as well as of an estimate of the speed of convergence.
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