
PANM 17

Jiří Eckstein; Jan Zítko
Comparison of algorithms for calculation of the greatest common divisor of several polynomials

In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and
Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 8-13, 2014. Institute of
Mathematics AS CR, Prague, 2015. pp. 64–70.

Persistent URL: http://dml.cz/dmlcz/702664

Terms of use:
© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702664
http://dml.cz


Programs and Algorithms of Numerical Matematics 17
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Abstract

The computation of the greatest common divisor (GCD) has many applications in
several disciplines including computer graphics, image deblurring problem or comput-
ing multiple roots of inexact polynomials. In this paper, Sylvester and Bézout matrices
are considered for this purpose. The computation is divided into three stages. A rank
revealing method is shortly mentioned in the first one and then the algorithms for cal-
culation of an approximation of GCD are formulated. In the final stage the coefficients
are improved using Gauss-Newton method. Numerical results show the efficiency of
proposed last two stages.

1. Introduction

Sylvester matrices (see [1, 3, 5, 6, 10, 11, 14, 15, 16, 17]) or Bézout matrices
(see [3, 7, 8, 12]) can be used for the calculation of GCD. We start with Sylvester
matrix. The coefficients of GCD of two polynomials f1 and f2 can be obtained
from a Sylvester subresultant Sk(f1, f2) which is formed from the Sylvester matrix
S(f1, f2) by deleting the last k − 1 rows, the last k − 1 columns of the coefficients
of f1 and the last k − 1 columns of the coefficients of f2. If ni =deg(fi) for i = 1, 2,
n1 ≥ n2, and if for a positive integer d ≤ n2 the subresultant Sd(f1, f2) is the first
rank deficient matrix in the sequence

Sn2
(f1, f2), Sn2−1(f1, f2), . . . , S1(f1, f2), (1)

then d =deg(GCD(f1, f2)). There are two well-known procedures for calculation of
the rank (or rank deficiency) of a matrix. For small dimension the usage of SVD is
sufficient (see for example [2] or [9]). The numerical rank revealing algorithm with
many robust examples is in detail described in the papers [11, 17]. The whole process
is in details, together with the calculation of GCD and rank determination, explained
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in the papers [17], [11], [14] and therefore, in the following, we are considering the
calculation for m polynomials.

We now consider m real polynomials f1, f2,. . . fm. Let ni =deg(fi). Denote
g =GCD(f1, f2, . . . , fm). It is assumed that d=deg(g) > 0. The objective is to find
polynomials w1, w2, . . . , wm of degrees n1 − d, n2 − d,. . . , nm − d respectively, such
that fi = wi g for all considered i, which can be expressed in the form (see [4, 16, 17])

Cd(wi)~g = ~fi, for i ∈ {1, 2, . . . , m}, (2)

where Cd(wi) is the Cauchy matrix for the polynomial wi with d + 1 columns, i.e.,
Cd(wi) ∈ R

(ni+1)×(d+1). The symbol ~g denotes the vector of coefficients of g and the

symbols ~fi and ~wi have an analogous meaning. The system (2) can be rewritten in
the form
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(3)

and ~r is a scaling vector (see [16]). Let us remark that ~r,~g ∈ R
d+1, and ~wj ∈ R

nj−d+1.

The system (3) represents
( m
∑

j=1

nj

)

+m+1 equations with
( m
∑

j=1

nj

)

+m+1−(m−1) d

unknowns and the least square solution (see [9]) is applied. According to the well
known theory (see [2]) we have

grad

[

1

2
‖F (x)− b ‖2

]

= (J(x))T [F (x)− b] , (4)

where J(x) is the Jacobian of F and can be easily calculated as a Gateaux derivative
of F . The problem of location of minimum leads to the solution of the system

(J(x))T [F (x)− b] = 0. (5)

Let us mention the result formulated in [16]: for every scaling vector ~r satisfying
~rT~g 6= 0, if GCD(w1, w2, . . . , wm) = 1, then the Jacobi matrix has a full column
rank and therefore F (x) = b. However all these investigations depend on the basic
question how to find the rank d. This is well known for m = 2 and it is shortly
analysed in Section 2. In the next section the algorithm using Sylvester matrices
for m ≥ 3 is discussed. In Section 3, the calculation of the greatest common divisor
of several univariate polynomials through Bézout-like matrices is considered. Both
strategies are numerically tested in the last section.
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2. Calculation of GCD through Sylvester matrices

At the beginning consider the polynomials f1 and f2 of degrees n1 and n2 re-
spectively, where n1 ≥ n2. According to the previous section we determine an
integer d such that Sd(f1, f2) is the first rank deficient matrix in (1) and denote the
right singular vector of the matrix Sd(f1, f2) = [Cn2−d(f1), Cn1−d(f2)] corresponding
to the smallest singular value σmin (Sd(f1, f2)), which is theoretically equal to zero,
by [(~w2)

T ,−(~w1)
T ]T . We have denoted g =GCD(f1, f2). The coefficients of ~g are

calculated as the least square solution of the equation

Cd(w2)~g = ~f2 or Cd(w1)~g = ~f1. (6)

One of these equations (usually the first one) is solved and the second one is used
for improvement of the result if it is necessary.

However, for three or more polynomials it is impossible to apply an analogous
technique for finding the degree of GCD(f1, f2, f3). A consecutive process is usually
applied, which can be formally written for three polynomials in the form

d = deg(GCD(f3,GCD(f1, f2))).

Numerically, the determination of GCD is usually based on some minimisation
method which is formally written by (4), (5) and the realization means an infinite
iterative process where only finite number of iterations is implemented. Moreover, if
the calculation is performed in floating point environment the result is inexact and
therefore an approximation is obtained as a result of the above mentioned minimiza-
tion process. This approximation to GCD will be in this paper entitled approximate

greatest common divisor - AGCD. This concept is studied and discussed in many pa-
pers (see for example [6, 13, 16]). The concept AGCD is mentioned in context with
STLN algorithm (see [10, 15, 13, 6]). In this paper AGCD is the result of the least
square procedures which is realized by the Gauss-Newton method. Exact coefficients
are assumed. Let us consider the system (5). By analogy to [16] and [17] we now
present the algorithm for several polynomials. The numerical process will be evident
from the following algorithm.

Algorithm 2.1 (AGCD for m polynomials.)
Input: Real polynomials f1, f2,. . . , fm of degrees n1, n2,. . . , nm respectively, vec-
tor b defined by (3) and a given tolerance θ. It is assumed that

n1 ≥ n2 ≥ · · · ≥ nm.

Output: Polynomial g =AGCD(f1, f2, . . . , fm)
begin

g := fnm

for j = m,m− 1, . . . , 2 do

Calculate g =AGCD(g, fnj−1
).
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end

for j = 1, m do

wj(x) := fj(x)/g(x)
end

Put d :=deg(g);
form the vector (x)T = [(~g)T , ( ~w1)

T , ( ~w1)
T , . . . , ( ~wm)

T ]T for the initial
approximation of Gauss-Newton iteration.
repeat
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x = x+

until ‖F (x)− b‖ < θ
Once ‖F (x)− b‖ < θ, we extract coefficients of the polynomial g(x)
from the vector x.

We now have g(x) =GCD (f1, f2, . . . , fm).

end of algorithm

The matrix is a block matrix, the non-zero blocks are Cauchy matrices. It con-
tains only zero-blocks except for the first column and the diagonal blocks.

3. Calculation of GCD using Bézout matrices

We now present a different approach to computing the GCD of several real uni-
variate polynomials using Bézoutian matrices (see [3], [8]). The size of this kind of
matrix depends purely on the degree of one of the polynomials. It will be possible
to determine the degree of GCD of a whole set of polynomials at once. Moreover,
its coefficients will be computed at the same time. Let p and q be two polynomials,

p(x) = a0x
k + a1x

k−1 + . . . ak−1x+ ak,

q(x) = b0x
k + b1x

k−1 + . . . bk−1x+ bk

of degrees at most k > 0. If deg(p) >deg(q) then some of the first coefficients of q
equal zero.
The Bézout matrix associated to p and q (see [12]) is

B(p, q) =







c1,1 · · · c1,k
...

...
ck,1 · · · ck,k






,

67



where the coefficients ci,j are defined by the relation

p(x)q(y)− p(y)q(x)

x− y
=

k
∑

i,j=1

ci,jx
i−1yj−1.

In the following, the procedure for computing the AGCD of m polynomials is
presented. To achieve this, a set of polynomials f1, . . . , fm satisfying

k := n1 = deg(f1) > deg(fi), i = 2, 3, . . . , m

will be assumed. In contrast with Sylvester matrices, all the Bézout matrices B(f1, fi),
i = 2, 3, . . . , m are square and of the same dimension. Therefore the matrix

Bf1(f2, . . . , fm) =











B(f1, f2)
B(f1, f3)

...
B(f1, fm)
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

can be constructed. Analogously to computation with Sylvester matrices, the degree
of the AGCD equals k − rank (Bf1(f2, . . . , fm)). Its coefficients can be computed by
determining the linear combinations of column vectors, as described in the algorithm
below (for details see [8]). The numerical realization of GCD will be again called
AGCD.

Algorithm 3.1 (AGCD for m polynomials.)
Input: Real polynomials f1, f2,. . . , fm of degrees n1, n2,. . . , nm respectively. It is
assumed that k := n1 > max{n2, . . . , nm}.

Output: Polynomial g =AGCD(f1, f2, . . . , fm).
begin

Determine the d = k − rank(Bf1(f2, . . . , fm)).
Let t1, . . . , tk be column vectors of Bf1(f2, . . . , fm) = [t1, . . . , tk].
Construct T2 = [tk, tk−1, . . . , td+1] and T1 = [td, td−1, . . . , t1].
Calculate QR decomposition of T2, i.e. T2 = QR, where Q ∈ R

k×k is orthogonal
and R ∈ R

k×(k−d) is an upper triangular matrix.
We set c := (R)−1

k−d,k−d and compute wd+1
i = c

(

QTT1

)

k−d,i
, for i = d, . . . , 1.

Setting hi := wd+1
d−i+1, i = 1, . . . , d and h0 := 1,

we finally have g(x) = h0x
d + h1x

d−1 + . . .+ hd−1x+ hd = GCD(f1, . . . , fm).
end of algorithm
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4. Numerical experiment

To compare the two presented algorithms, let us now have the following polyno-
mials:

f0 = (x− 0.9)5(x− 0.8)5(x− 0.7)5(x+ 0.3)5(x+ 0.5)5(x+ 0.7)5,

f1 = (x− 2)5(x− 0.9)5(x− 0.8)5(x+ 0.5)5(x+ 2)5,

f2 = (x− 3)5(x− 0.8)5(x+ 0.5)5(x+ 2)5 and

f3 = (x− 0.8)4(x+ 0.5)4.

It is easily seen, that GCD(f0, . . . , f3) = f3. Accuracy of these computations is shown
in Table 1. The errors made in determining the coefficients are about two orders of
magnitude smaller in case of Algorithm 2.1 than in the case of Algorithm 3.1.

Coefficients Error in coefficients

GCD Algorithm 2.1 Algorithm 3.1
1.0000
-1.2000
-1.0600
1.3320
0.5361
-0.5328
-0.1696
0.0768
0.0256

0.0000e+00
-9.1038e-15
-6.8834e-15
2.6645e-15
1.2212e-15
-2.6645e-15
-2.0539e-15
-7.2164e-16
-3.8164e-16

0.0000e+00
1.8050e-12
-7.6916e-13
-2.6426e-12
3.3151e-13
1.3358e-12
1.1419e-13
-2.3732e-13
-5.7697e-14

Table 1: Comparison of computational error in AGCD coefficients produced by Al-
gorithm 2.1 and Algorithm 3.1.

Acknowledgements

This work was supported by the grant prvouk p47. The authors thank for this
support.

References

[1] Barnett, S.: Polynomials and linear control systems. Marcel Dekker, INC., New
York and Basel, 1983.

[2] Björk, Å.: Numerical method for least square problems. SIAM, Philadelphia, 1996.

[3] Bini, D. and Pan, V.Y.: Polynomial and matrix computation, vol. 1 fundamental

algorithms. Birkhuser, 1994.

[4] Corless, R.M., Gianni, P.M., Trager, B.M., and Watt, S.M.: The singular value
decomposition for polynomial systems. In: Proc. ISSAC 95, pp. 195–200. ACM
Press, 1995.

69
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