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Abstract

We derive a residual based a posteriori error estimate for the Stokes-Brinkman

problem on a two-dimensional polygonal domain. We use Taylor-Hood triangular

elements. The link to the possible information on the regularity of the problem is

discussed.

1. Introduction

In the paper we try to contribute to the technique of a posteriori error esti-
mates for the finite element solution of linearized flow problems. In this respect we
note that important results have already been obtained: concerning linear elliptic
equations let us mention I. Babuška, W. C. Rheinboldt [2], I. Babuška, R. Durán,
R. Rodŕıguez [3], concerning the Stokes problem e.g. M. Ainsworth, J. T. Oden [1],
R. E. Bank, D. Welfert [5], C. Carstensen, S. Jansche [7], C. Johnson, R. Rannacher,
M. Boman [12], R. Verfürth [15].

The goal of this paper is to link the problem of a posteriori error estimates as
much as possible to the information on the regularity of the solution.

Let us illustrate it first on the Dirichlet problem for the Poisson equation

−∆u = f in Ω,

u = 0 on ∂Ω, (1)

where Ω is a polygonal domain in R2. Let uh be the finite element solution of (1),
with linear triangular elements. Let us denote

e = u− uh,
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the approximation error, and

R(uh) = f +∆uh,

the residual. Following the technique of K. Eriksson et al. [10], we first express the
error by means of product of residual and solution of the dual problem, then use the
Galerkin orthogonality and get the estimate of the error, in the L2-norm:

‖e‖20 ≤
∑

K∈Th

{

‖R(uh)‖0,K‖ϕ− πhϕ‖0,K +
∑

l∈∂K

∥

∥

∥

∥

1

2

[[

∂uh

∂n

]]

l

∥

∥

∥

∥

0,l

‖ϕ− πhϕ‖0,l

}

, (2)

where ϕ is the solution of the dual problem

−∆ϕ = e in Ω,

ϕ = 0 on ∂Ω, (3)

πhϕ means the interpolant of ϕ. The sum in (2) is taken over all triangles in the
triangulation Th, the symbol

[[

∂uh

∂n

]]

l
means the jump of the normal derivative ∂uh

∂n
over the edge l of the triangle K.
Let us now distinguish 3 cases:

A) General polygonal domain Ω:
Let hK be the largest side of the triangle K. The interpolation property together
with the (low) regularity of the dual problem (3) yield

‖ϕ− πhϕ‖0,K ≤ CIhK‖ϕ‖1 ≤ CICRhK‖e‖0.

Combining this with (2), we come to the a posteriori error estimate

‖e‖0 ≤ CICR

∑

K∈Th

hK

{

‖R(uh)‖0,K + h
− 1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

∂uh

∂n

]]

l

∥

∥

∥

∥

0,l

}

. (4)

B) Convex polygon Ω:
Now the regularity of the dual problem (3) is higher, cf. R.B. Kellogg,
J. E. Osborn [13], and together with the interpolation property it gives

‖ϕ− πhϕ‖0,K ≤ CIh
2
K‖ϕ‖2 ≤ CICRh

2
K‖e‖0.

Combining this with (2), we come to the more precise a posteriori estimate

‖e‖0 ≤ CICR

∑

K∈Th

h2
K

{

‖R(uh)‖0,K + h
− 1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

∂uh

∂n

]]

l

∥

∥

∥

∥

0,l

}

. (5)

C) Nonconvex polygon Ω with known singularity:
It is well-known that the solution near the nonconvex corner, in the local spherical
coordinates, has the form

u(r, ϑ) = rγw(ϑ),
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where r is the distance from the corner, γ ∈ (0, 1). For instance, the case of the
L-shaped domain with the interior angle ω = 3

2
π gives γ = 2

3
, cf. also [6]. Now the

interpolation together with the above regularity gives

‖ϕ− πhϕ‖0,K ≤ CIh
1+γ−ε
K ‖ϕ‖H1+γ−ε ≤ CICRh

1+γ−ε
K ‖e‖0, ∀ε > 0,

which, combined with (2), finally leads to the a posteriori estimate

‖e‖0 ≤ CICR

∑

K∈Th

h1+γ−ε
K

{

‖R(uh)‖0,K + h
− 1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

∂uh

∂n

]]

l

∥

∥

∥

∥

0,l

}

, (6)

valid ∀ε > 0. Of course, in (6) the parameter γ applies only in the nearest neighbor-
hood of the corner.

Comparing the estimates (4), (5), (6) we see that the a posteriori error estimate
depends significantly on the regularity of the problem. Having this in mind, we try
to derive the a posteriori error estimate for the Stokes-Brinkman problem.

2. The Stokes-Brinkman model

Let Ω be a bounded Lipschitzian domain, Ω ⊂ R2, which consists of two parts:
porous part Ωp and fluid part Ωf , Ω̄ = Ω̄p ∪ Ω̄f . The Stokes-Brinkman equation
representing a mathematical model of a single phase flow in a porous/free flow media
has the following form

νK−1v +∇p− ν∗∆v = f in Ω, (7)

∇ · v = 0 in Ω, (8)

v = w on ∂ΩD,
∂v

∂n
− np = s on ∂ΩN , (9)

where v is the vector of velocity, P is the pressure, f is the vector of external force,
n is the outward-pointing normal to the boundary, ν∗ is the effective viscosity and
ν - the physical viscosity - is a uniform constant in the entire domain Ω. K is
a symmetric permeability tensor, which in Ωp is equal to the Darcy permeability of
the porous media. Note that with the choice ν∗ = 0 in the vugular region Ωp, the
equation (7) reduces to the problem of Darcy’s law. On the other hand by choosing
kij → ∞ (or very large) in fluid domain Ωf , the equation (7) reduces to the problem
of Stokes flow (here ν∗ is taken equal to the physical fluid viscosity ν). Thus, the
Stokes or Darcy’s equations can be obtained by suitable choices of the parameters ν∗

and K by defining them in vugular and rock matrix regions, respectively.
In the porous region (K < ∞) it is known [14], that for moderately small per-

meabilities and pore fractions, the diffusive term ν∗∆v, where ν∗ takes values close
to the fluid viscosity ν, intoroduces only a small perturbation of the velocity and
pressure fields in comparison with a pure Darcy law with ν∗ = 0. In [14] it is shown
that Stokes-Brinkman equation with the choice ν∗ = ν in the porous region is very
close to the solution of coupled Stokes and Darcy’s equations.
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The advantage of Stokes-Brinkman model is usage of uniform equations for porous
and free flow domains. Boundary conditions between these two domains are repre-
sented by K. This approach makes it possible to model heterogeneous material.
Moreover, by a numerical point of view, it is easier to solve a monolithic system such
as Stokes-Brinkman, in contrast to a coupled Darcy-Stokes system which requires
an additional iterative scheme. Also, near the interface, Stokes-Brinkman equations
allow us to avoid the typical grid refinement issues necessary for solving the interface
between Darcy and Stokes region. On the other hand usage of Taylor-Hood elements
for the whole domain requires big load of memory.

3. Weak formulation of Stokes-Brinkman equations

In what follows we denote G = K−1 and assume G is symmetric.
For the weak formulation we denote

H1
E := {u ∈ H1(Ω)2|u = w na ∂ΩD}, (10)

H1
E0

:= {v ∈ H1(Ω)2|v = 0 na ∂ΩD}. (11)

Now the weak form of the Stokes-Brinkman problem reads:
Find v ∈ H1

E0
and p ∈ L2

0(Ω) such that

ν∗

∫

Ω

∇v : ∇v∗ + ν

∫

Ω

vTGv∗ −

∫

Ω

p∇ · v∗ =

∫

Ω

f · v∗ ∀v∗ ∈ H1
E0
, (12)

∫

Ω

q∇ · v = 0 ∀q ∈ L2
0(Ω). (13)

Here L2
0(Ω) is the space of L2 functions having mean value zero.

On the space V =
(

H1
0(Ω)

2 × L2
0(Ω)

)

we define the bilinear form

A
(

{v, p}, {v∗, p∗}
)

= ν∗

∫

Ω

∇v : ∇v∗ + ν

∫

Ω

vTGv∗ −

∫

Ω

p∇ · v∗ −

∫

Ω

p∗∇ · v (14)

where (., .)0 means the scalar product in L2.
In what follows we assume w = 0, i. e. only zero Dirichlet condition on the whole

boundary ∂Ω. Problem (12), (13) can be written as follows: find {v, p} ∈ V , such
that

A
(

{v, p}, {v∗, p∗}
)

= (f , v∗)0, ∀{v∗, p∗} ∈ V. (15)

4. Finite element approximation

We suppose Ω to be a polygon, for simplicity. Let Th be regular [11] triangulations
of Ω. Let Xh, Mh be the finite element spaces of Taylor-Hood elements (cf. e.g.
F. Brezzi, M. Fortin [4]), i.e.

Xh = {v ∈ H1
0 (Ω)

2, v/T ∈ P 2(T )2, T ∈ Th},

Mh = {p ∈ L2
0(Ω), p/T ∈ P 1(T ), T ∈ Th}.
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These satisfy the Babuška-Brezzi condition [4]. The finite element approximation of
the Stokes-Brinkman problem consists in finding {vh, ph} ∈ Xh ×Mh such that

A
(

{vh, ph}, {v
∗
h, p

∗
h}
)

= (f , v∗
h)0 , ∀{v∗

h, p
∗
h} ∈ Xh ×Mh. (16)

5. A posteriori error estimate

We follow the idea of K. Eriksson et al. [10] who proved the a posteriori error
estimate for the Poisson equation. We define the residual components by the relations

R1{vh, ph} = f + ν∗∆vh − νGvh −∇ph, R2{vh, ph} = div vh. (17)

Next we study the properties of the errors

ev = v − vh , ep = p− ph ,

where {v, p} is the exact solution of (15), {vh, ph} is the approximate solution defined
in (16). The V norm of {ev, ep} is

‖{ev, ep}‖
2
V = (ev, ev)1 + (ep, ep)0 =

∫

Ω

(ev · ev +∇ev : ∇ev) +

∫

Ω

epep.

By the Poincaré-Friedrichs inequality, cf. [9], as ev ∈ H1
0 (Ω)

2

(ev, ev)1 ≤ CP

∫

Ω

∇ev : ∇ev (18)

5.1. Dual Stokes-Brinkman problem

To study the above norms we introduce the dual Brinkman-Stokes problem by

−ν∗∆ϕv + νGϕv +∇ϕp = −∆ev in Ω, here ∆ev ∈ H−1(Ω)

−div ϕv = ep in Ω, (19)

ϕv = 0 on ∂Ω,

which in a weak form is: find ϕv ∈ H1(Ω)2 and ϕp ∈ L2
0(Ω) such that

(ν∗∇ϕv,∇v∗)0 + ν((Gϕv), v
∗)− (ϕp,∇v∗)0 = (∇ev,∇v∗)0, ∀v∗ ∈ H1

0(Ω)
2,

(−div ϕv, p
∗)0 = (ep, p

∗)0, ∀p∗ ∈ L2
0(Ω), (20)

or, using the notation (14)

A({ϕv, ϕp}, {v
∗, p∗}) = (∇ev,∇v∗)0 + (ep, p

∗)0 , ∀{v∗, p∗} ∈ V . (21)

By (18) and (20) where we put v∗ = ev, p∗ = ep, we get

1

CP

(ev, ev)1 ≤ (∇ev,∇ev)0 = ν∗(∇ϕv,∇ev)0 + ν((Gϕv),ev)− (ϕp∇, ev)0

= ν∗(∇ϕv,∇v)0 + ν((Gϕv)v)− (ϕp∇, v)0 − ν∗(∇ϕv,∇vh)0

− ν((Gϕv)vh) + (ϕp∇, vh)0, (22)

(ep, ep)0 = (ep,−div ϕv)0 = −(p∇,ϕv)0 + (ph∇,ϕv)0. (23)
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5.2. Estimation of the error by means of the residual and solution of the
dual problem

Combining (22), (23), and (19) we get (as CP ≥ 1)

1

CP

{

(ev, ev)1 + (ep, ep)0

}

≤ ν∗(∇v,∇ϕv)0 + ν((Gvϕv))− (p,∇ϕv)0 − (∇v, ϕp)0

+
∑

K∈Th

{−ν∗(∇ϕv,∇vh)0,K − ν((Gvhϕv)) + (ph,∇ϕv)0,K + (ϕp,∇vh)0,K}

= (f ,ϕv)0 +
∑

K∈Th

{

(ν∗∆vh,ϕv)0,K −

∫

∂K

ν∗∂vh

∂n
ϕvds

}

− ν((Gvhϕv)) (24)

−
∑

K∈Th

{

(∇ph,ϕv)0,K +

∫

∂K

phϕv · nds + (div vh, ϕp)0,K

}

=
∑

K∈Th

(f + ν∗∆vh − ν((Gvhϕv))−∇ph,ϕv)0,K +
∑

K∈Th

(div vh, ϕp)0,K

−
∑

K∈Th

∫

∂K

ν∗∂vh

∂n
ϕvds+

∑

K∈Th

∫

∂K

phϕv · nds

In view of (16) we also have

∑

K∈Th

(f + ν∗∆vh − νGvh −∇ph, v
∗
h)0,K + (div vh, p

∗
h)0

= (f , v∗
h)0 +

∑

K∈Th

{

(−ν∗∇vh,∇v∗
h)0,K − ν(Gvh, v

∗
h) +

∫

∂K

ν∗∂vh

∂n
v∗
hds

}

+ (∇ph, v
∗
h)0 −

∑

K∈Th

∫

∂K

phv
∗
h · nds+ (div vh, p

∗
h)0 (25)

= 0 +
∑

K∈Th

∫

∂K

ν
∂vh

∂n
v∗
hds−

∑

K∈Th

∫

∂K

phv
∗
h · nds, ∀{v∗

h, p
∗
h} ∈ Xh ×Mh.

This implies, taking v∗
h = πhϕv, p

∗
h = πhϕp , the Clement interpolants, (cf. e.g. [8],

p. 146) that

∑

K∈Th

(f + ν∗∆vh − νGvh −∇ph, πhϕv) + (div vh, πhϕp)0

−
∑

K∈Th

∫

∂K

ν∗∂vh

∂n
πhϕvds−

∑

K∈Th

∫

∂K

phπhϕv · nds = 0 (26)

Now subtracting zero in (26) from (24) we get
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1

CP

{

(ev, ev)1 + (ep, ep)0

}

≤
∑

K∈Th

(f + ν∗∆vh − νGvh −∇ph,ϕv − πhϕv)0,K + (div vh, ϕp − πhϕp)0

−
∑

K∈Th

∫

∂K

ν
∂vh

∂n
(ϕv − πhϕv)ds+

∑

K∈Th

∫

∂K

ph(ϕv − πhϕv) · nds (27)

=
∑

K∈Th

(f + ν∗∆vh − νGvh −∇ph,ϕv − πhϕv)0,K + (div vh, ϕp − πhϕp)0

−
∑

K∈Th

∑

l∈∂K

∫

l

(

1

2

[[

ν
∂vh

∂n
− phn

]]

l

)

(ϕv − πhϕv)ds,

where we denoted
[[

ν
∂vh

∂n
− phn

]]

l

=

(

ν
∂vh

∂n
− phn

)/

l+

−

(

ν
∂vh

∂n
− phn

)/

l−

the jump along the common side l of two adjacent triangles. Then, using in turn
the Schwarz inequality, the interpolation properties of Xh, Mh (cf. e.g. [4]), and the
estimate of the solution of the dual problem (19) (cf. [4]), we get the inequalities

‖ev‖
2
1 + ‖ep‖

2
0

≤ CP

∑

K∈Th

{

‖R1{vh, ph}‖0,K‖ϕv − πhϕv‖0,K + ‖R2{vh, ph}‖0,K‖ϕp − πhϕp‖0,K

}

+ CP

∑

K∈Th

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

‖ϕv − πhϕv‖0,l (28)

≤ CPCI

∑

K∈Th

{

hK ‖R1{vh, ph}‖0,K ‖ϕv‖1 + ‖R2{vh, ph}‖0,K ‖ϕp‖0

}

+ CPCI

∑

K∈Th

(hK)
1

2

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

‖ϕv‖1

≤ CPCICR

∑

K∈Th

{

hK ‖R1{vh, ph}‖0,K + ‖R2{vh, ph}‖0,K

+
∑

l∈∂K

(hK)
1

2

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

}

·
{

‖∆ev‖−1 + ‖ep‖0
}

.

Using then the relations

‖∆ev‖−1 ≡ sup
v∗∈H1

0
,v∗ 6=0

|(∆ev, v
∗)0|

‖v∗‖1
= sup

v∗∈H1
0
,v∗ 6=0

|(∇ev,∇v∗)0|

‖v∗‖1

≤ sup
v∗∈H1

0
,v∗ 6=0

‖∇ev‖0 ‖∇v∗‖0
‖v∗‖1

≤ ‖∇ev‖0 ≤ ‖ev‖1
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we get, by (28)

{

‖ev‖1 + ‖ep‖0
}2

≤ 2
{

‖ev‖
2
1 + ‖ep‖

2
0

}

≤ 2CPCICR

∑

K∈Th

{

hK‖R1{vh, ph}‖0,K

+ ‖R2{vh, ph}‖0,K + h
1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

}

·
{

‖ev‖1 + ‖ep‖0
}

. (29)

Upon cancelling
{

‖ev‖1 + ‖ep‖0
}

in (29) we finally get the following theorem:

Theorem 1. Let Ω be a polygon in R2. Let Th be a family of regular triangulations

of Ω. Let {vh, ph} be the Taylor-Hood approximation of the solution {v, p} of the

Stokes-Brinkman problem. Then the error {ev, ep} satisfies the following a posteriori

estimate

‖ev‖1 + ‖ep‖0 ≤ 2CPCICR

∑

K∈Th

{

hK‖R1{vh, ph}‖0,K + ‖R2{vh, ph}‖0,K

+ h
1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

}

. (30)

where CP , CI , CR are positive constants, residuals R1 and R2 are defined in (17) .

Conclusions

The estimate in Theorem 1 applies to more general class of elements. Of course,
for Taylor-Hood elements with continuous pressure the jumps of ph along the common
sides disappear.

Let us note that for convex domains stronger regularity applies to the Stokes
problem, cf. [13], and better a posteriori error estimate may be expected.

For nonconvex domains with corners we do not obtain so strong regularity as
in [13], cf. e.g. [6], but still the a posteriori error estimate should be better than
in (30), as it was for the Poisson equation in (2).
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