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Monika Balázsová, Miloslav Feistauer, Martin Hadrava, Adam Kośık
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Abstract

This paper is concerned with the stability analysis of the space-time discontinu-

ous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion

problems. In the formulation of the numerical scheme we use the nonsymmetric, sym-

metric and incomplete versions of the discretization of diffusion terms and interior and

boundary penalty. Then error estimates are briefly characterized. The main atten-

tion is paid to the investigation of unconditional stability of the method. Theoretical

results are demonstrated by a numerical example.

1. Introduction

One of efficient and robust techniques for the numerical solution of partial differ-
ential equations is the discontinuous Galerkin (DG) method. It is based on piecewise
polynomial approximations of the sought exact solution over a partition of the com-
putational domain without any requirement of the continuity on interfaces between
neighbouring elements. Most of works on the DG method are concerned with space
discretization. The numerical simulation of strongly nonstationary transient prob-
lems requires the application of numerical schemes of high order of accuracy both in
space and in time. For some applications, the standard Euler schemes or θ-schemes
are not sufficiently accurate in time. In computational fluid dynamics, Runge-Kutta
methods are very popular ([3]). However they are conditionally stable. It appears
suitable to use the discontinuous Galerkin discretization with respect to space as
well as time for the construction of numerical schemes with high accuracy in space
and time for the solution of nonlinear nonstationary problems. The discontinuous
Galerkin time discretization was introduced and analyzed e.g. in [4] for the solu-
tion of ordinary differential equations. In [6] it was combined with conforming finite
elements and applied to parabolic problems. See also the monograph [7].

The papers [2] and [5] are concerned with theoretical analysis of error estimates for
the space-time DG method applied to nonlinear nonstationary convection-diffusion
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problems. However, in a general case the results were obtained under a CFL-like
stability condition applied in the vicinity of the boundary. There is a natural ques-
tion, if this condition is really necessary for guaranteeing the stability. This was the
motivation for the investigation of the stability of the space-time DG method. In
this paper we present a brief description of the obtained results. The analysis is
rather complicated and technical and detailed proofs will be published in [1].

2. Formulation of the continuous problem

Let Ω ⊂ R
d, d = 2, 3, be a bounded domain and T > 0. We consider the initial-

boundary value problem to find u : QT = Ω× (0, T ) → R such that

∂u

∂t
+

d
∑

s=1

∂fs(u)

∂xs
− div(β(u)∇u) = g in QT , (1)

u |∂Ω×(0,T ) = uD, (2)

u(x, 0) = u0(x), x ∈ Ω. (3)

We assume, that g, uD, u
0, fs are given functions and fs ∈ C1(R), |f ′

s| ≤ C, fs(0) = 0,
s = 1, . . . , d. Moreover, let the function β : R → [β0, β1], 0 < β0 < β1 < ∞, be
Lipschitz continuous: |β(u1)− β(u2)| ≤ Lβ |u1 − u2| for all u1, u2 ∈ R.

3. Space-time discretization

In the time interval [0, T ] we introduce a partition formed by time instants
0 = t0 < t1 < . . . < tM = T, and denote Im = (tm−1, tm), τm = tm − tm−1,
m = 1 . . . ,M . We set τ = maxm=1,...,M τm. For a function ϕ defined in

⋃M
m=1 Im

we denote one-sided limits at tm as ϕ±
m = ϕ(tm±) = limt→tm± ϕ(t) and the jump as

{ϕ}m = ϕ(tm+)− ϕ(tm−).
For each Im we consider a system of partitions {Th,m}h∈(0,h0) with h0 > 0 of Ω

into a finite number of closed triangles with mutually disjoint interiors (partitions
are in general different for different m). We set hK = diam(K) for K ∈ Th,m,
hm = maxK∈Th,m

hK and h = maxm=1,...,M hm.
By Fh,m we denote the system of all faces of all elements K ∈ Th,m. It consists of

the set of all inner faces F I
h,m and the set of all boundary faces FB

h,m. Each Γ ∈ Fh,m

will be associated with a unit normal vector nΓ. By K
(L)
Γ and K

(R)
Γ ∈ Th,m we denote

the elements adjacent to the face Γ ∈ Fh,m. We shall use the convention, that nΓ

is the outer normal to ∂K
(L)
Γ . Over a triangulation Th,m, for each positive integer k,

we define the broken Sobolev space Hk(Ω, Th,m) = {v; v|K ∈ Hk(K) ∀K ∈ Th,m}.

If v ∈ H1(Ω, Th,m) and Γ ∈ Fh,m, then v|
(L)
Γ , v|

(R)
Γ will denote the traces of v on Γ

from the side of the elements K
(L)
Γ , K

(R)
Γ adjacent to Γ. For Γ ∈ F I

h,m we set

〈v〉Γ =
1

2

(

v|
(L)
Γ + v|

(R)
Γ

)

, [v]Γ = v|
(L)
Γ − v|

(R)
Γ .
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We use the notation

h(Γ) =
h
K

(L)
Γ

+ h
K

(R)
Γ

2
for Γ ∈ F I

h,m, h(Γ) = h
K

(L)
Γ

for Γ ∈ FB
h,m.

If u, ϕ ∈ H2(Ω, Th,m) and cW > 0, we introduce the forms

ah,m(u, ϕ) =
∑

K∈Th,m

∫

K

β(u)∇u · ∇ϕdx

−
∑

Γ∈FI
h,m

∫

Γ

(〈β(u)∇u〉 · nΓ [ϕ] + θ 〈β(u)∇ϕ〉 · nΓ [u]) dS

−
∑

Γ∈FB
h,m

∫

Γ

(β(u)∇u · nΓ ϕ+ θβ(u)∇ϕ · nΓ u− θβ(u)∇ϕ · nΓ uD) dS,

Jh,m(u, ϕ) = cW
∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[u] [ϕ]dS + cW
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

uϕ dS,

bh,m(u, ϕ) = −
∑

K∈Th,m

∫

K

d
∑

s=1

fs(u)
∂ϕ

∂xs
dx

+
∑

Γ∈FI
h,m

∫

Γ

H(u
(L)
Γ , u

(R)
Γ ,nΓ) [ϕ] dS +

∑

Γ∈FB
h,m

∫

Γ

H(u
(L)
Γ , u

(L)
Γ ,nΓ)ϕdS, (4)

lh,m(ϕ) =
∑

K∈Th,m

∫

K

gϕ dx+ β0 cW
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

uD ϕdS.

Let us note that in integrals over faces we omit the subscript Γ. We consider
θ = 1, θ = 0 and θ = −1 and get the symmetric (SIPG), incomplete (IIPG) and
nonsymmetric (NIPG) variants of the approximation of the diffusion terms, respec-
tively. In (4), H is a numerical flux, which is Lipschitz-continuous, consistent and
conservative.

Let p, q ≥ 1 be integers. For each m = 1, . . . ,M we define the spaces

Sp
h,m = {ϕ ∈ L2(Ω); ϕ|K ∈ P p(K) ∀K ∈ Th,m},

Sp,q
h,τ = {ϕ ∈ L2(QT ); ϕ|Im =

q
∑

i=0

tiϕi withϕi ∈ Sp
h,m, m = 1, . . . ,M}.

By (·, ·) and ‖ · ‖ we denote the scalar product and the norm in L2(Ω). The symbol
| · |H1(K) denotes the seminorm in the space H1(K). The space H1(Ω, Th,m) will be
equipped with the norm

‖ϕ‖DG,m =





∑

K∈Th,m

|ϕ|2H1(K) + Jh,m(ϕ, ϕ)





1/2

.
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Definition. We say that U is an approximate solution of (1)-(3), if U ∈ Sp,q
h,τ and

∫

Im

((

∂U

∂t
, ϕ

)

+ ah,m(u, ϕ) + β0 Jh,m(u, ϕ) + bh,m(U, ϕ)

)

dt+ ({U}m−1, ϕ
+
m−1)

=

∫

Im

lh,m(ϕ) dt, ∀ϕ ∈ Sp,q
h,τ , m = 1, . . . ,M, (5)

U−

0 := L2(Ω)-projection of u0 on Sp
h,1.

4. Summary of results on error estimates

The papers [5] and [2] were devoted to the analysis of the STDG method applied
to problem in the case of linear diffusion and nonlinear diffusion, respectively. Under
the assumptions on the regularity of the exact solution

u ∈ Hq+1(0, T ;H1(Ω)) ∩ C([0, T ];Hp+1(Ω)),

‖∇u‖L∞(Ω) ≤ cR for a. e. t ∈ (0, T ),

using approximation properties of the Sp
h,m- and Sp,q

h,τ - interpolation operators, as-
sumptions on the properties of the meshes, namely the shape regularity and local
quasiuniformity, and the condition τm ≥ c h2

m, m = 1, . . . ,M, error estimates in terms
of h and τ were proven.

Theorem 1. There exists a constant c > 0 such that

‖e−m‖
2 +

β0

2

m
∑

j=1

∫

Ij

‖e‖2DG,jdt ≤ c
(

h2p|u|2C([0,T ];Hp+1(Ω)) + τ 2q+α|u|2Hq+1(0,T ;H1(Ω))

)

,

m = 1, . . . ,M, h ∈ (0, h0). (6)

Here α = 2, if uD is a polynomial of degree ≤ q in t. Otherwise, under the assumption
that the condition

τm ≤ CCFLhK
(L)
Γ

(7)

with a constant CCFL independent of hK , τm and M is satisfied for all elements K
adjacent to the boundary ∂Ω, estimate (6) holds with α = 0.

5. Analysis of stability

There is a natural question, if condition (7) reminding the CFL stability condition
is necessary for the derivation of the error estimate (6), or it is also important for
guaranteeing the stability of the STDG method (5). In what follows, we shall show
that method (5) is unconditionally stable. This means that our goal is to prove that
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the approximate solution U of problem (1)-(3) is bounded by the L2-norm of g, u0

and by the ‖ · ‖DGB,m-norm of uD, which is defined as

‖uD‖DGB,m :=
(

JB
h,m(uD, uD)

)1/2
=



cW
∑

Γ∈FB
h,m

h−1(Γ)

∫

Γ

|uD|
2dS





1/2

.

The stability analysis starts by setting ϕ := U in the basic relation (5). We get

∫

Im

((

∂U

∂t
, U

)

+ ah,m(U, U) + β0 Jh,m(U, U) + bh,m(U, U)

)

dt (8)

+ ({U}m−1, ϕ
+
m−1) =

∫

Im

lh,m(U) dt.

After some manipulations we can derive the following identity

∫

Im

(

∂U

∂t
, U

)

dt+ ({U}m−1, U
+
m−1) =

1

2

(

‖U−
m‖

2 − ‖U−
m−1‖

2 + ‖{U}m−1‖
2
)

. (9)

For a sufficiently large constant cW , whose lower bound is determined by β0 and the
constants from the multiplicative trace inequality, inverse inequality, local quasiuni-
formity of the meshes, we can prove the coercivity of the diffusion term:

∫

Im

(ah,m(U, U) + β0 Jh,m(U, U)) dt ≥
β0

2

∫

Im

‖U‖2DG,m dt−
β0

2

∫

Im

‖uD‖
2
DGB,m dt.

(10)
Furthermore, if k1, k2 > 0 then there exists a constant cb = cb(k1) such that the
following inequalities for the convection term and for the right-hand side form hold:

∫

Im

|bh,m(U, U)| dt ≤
β0

k1

∫

Im

‖U‖2DG,m dt+ cb

∫

Im

‖U‖2 dt. (11)

∫

Im

|lh,m(U)| dt ≤
1

2

∫

Im

(

‖g‖2 + ‖U‖2
)

dt+ β0k2

∫

Im

‖uD‖
2
DGB,m dt

+
β0

k2

∫

Im

‖U‖2DG,m dt. (12)

If we substitute estimates (9)-(12) into our basic identity (8) and set k1 = k2 = 8,
c = max{2cb + 1, 17β0}, after some manipulation we get

‖U−
m‖

2 − ‖U−
m−1‖

2 +
β0

2

∫

Im

‖U‖2DG,mdt

≤ c

(
∫

Im

‖g‖2 dt+

∫

Im

‖U‖2 dt+

∫

Im

‖uD‖
2
DGB,mdt

)

. (13)
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Now our further task is to estimate the expression
∫

Im
‖U‖2 dt in terms of g

and uD. The main tool is the concept of the discrete characteristic function ζy ∈ Sp,q
h,τ

to U for y ∈ Im = (tm−1, tm) defined by

∫

Im

(ζy, ϕ) dt =

∫ y

tm−1

(U, ϕ) dt ∀ϕ ∈ Sp,q−1
h,τ , ζy(t

+
m−1) = U(t+m−1).

The operator assigning ζy to U is continuous, i.e, there exists cq > 0, depending on q
only, such that

∫

Im

‖ζy‖
2
DG,m dt ≤ cq

∫

Im

‖U‖2DG,m dt,

∫

Im

‖ζy‖
2 dt ≤ cq

∫

Im

‖U‖2 dt.

Then, after a technical and complicated analysis, it is possible to prove this important
estimate: there exists a constant c > 0 such that

∫

Im

‖U‖2 dt ≤ c τm

(

‖U−

m−1‖
2 +

∫

Im

‖g‖2 + ‖uD‖
2
DGB,m dt

)

. (14)

Now we come to the formulation of our main result, which demonstrates the
unconditional stability of the STDG method in the discrete L2(L∞)-norm, energy
DG-norm and L2(L2)-norm. (A detailed proof can be found in [1].)

Theorem 2. There exists a constant c > 0 such that

‖U−

m‖
2 +

β0

2

m
∑

j=1

∫

Ij

‖U‖2DG,j dt ≤ c

(

‖U−

0 ‖
2 +

m
∑

j=1

∫

Ij

(‖g‖2 + ‖uD‖
2
DGB,j) dt

)

,

m = 1, . . . ,M, h ∈ (0, h0),

‖U‖2L2(QT ) ≤ c

(

‖U−

0 ‖
2 +

M
∑

m=1

∫

Im

(‖g‖2 + ‖uD‖
2
DGB,m) dt

)

, h ∈ (0, h0).

6. Numerical experiment

We consider the problem

∂u

∂t
+ u

∂u

∂x1
+ u

∂u

∂x2
= ǫ∆u+ g in (0, 1)2 × (0, 10),

with ǫ = 0.1 and such initial and Dirichlet boundary conditions that the exact
solution has the form

u(x1, x2, t) = (1− e−10t) û(x1, x2),

where û(x1, x2) = 2rαx1x2(1− x1)(1− x2), r = (x1 + x2)
1/2 and α ∈ R is a constant.

It is possible to prove that u ∈ Hq+1(0, T ;Hβ(Ω)) for all β ∈ (0, α+3). (Here Hβ(Ω)
denotes the Sobolev-Slobodetskii space of functions with ”noninteger derivatives”.)
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Figure 1: Coarse mesh with 235 elements

We used five special triangular meshes having 235, 333, 749, 1622 and 2521 el-
ements. All these meshes have refined elements along the right-hand side of the
boundary. Figure 1 shows the coarsest mesh. In numerical experiments space poly-
nomial degree p = 1, 2, 3 and time polynomial degree q = 2 were used. We choose
fixed time step τ = 0.025 and set cW = 100 for SIPG. Tables show the computational
errors in the L∞(L2(Ω))-norm along the time interval [0, 10], and the corresponding
orders of convergence (EOC). It is seen, that for a sufficiently regular exact solution
(case α = 4), for the SIPG method we have optimal order of convergence O(hp+1)
for p = 1, 2, 3, whereas in the case with irregular solution (α = −3/2) the error
estimates are of order O(h3/2) for p = 1, 2, 3 (this result can be proven with the aid
of estimates in Sobolev-Slobodetskii spaces). The presented numerical experiments
demonstrate the unconditional stability of the numerical process without the CFL-
like condition (7). Further numerical experiments including also the NIPG case can
be found in [1].

p=1 p=2 p=3

Mesh h ‖eh‖ EOC ‖eh‖ EOC ‖eh‖ EOC
1 1.768E-01 2.167E-03 - 1.305E-04 - 6.681E-06 -
2 1.414E-01 1.488E-03 1.685 7.218E-05 2.654 2.948E-06 3.667
3 8.839E-02 6.549E-04 1.746 1.984E-05 2.748 5.019E-07 3.767
4 5.657E-02 2.914E-04 1.814 5.615E-06 2.828 9.011E-08 3.848
5 4.419E-02 1.842E-04 1.858 2.764E-06 2.872 3.440E-08 3.901

Table 1: Computational errors and the corresponding experimental orders (EOC) of
convergence of the SIPG method for α = 4
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p=1 p=2 p=3

Mesh h ‖eh‖ EOC ‖eh‖ EOC ‖eh‖ EOC
1 1.768E-01 2.668E-02 - 6.038E-03 - 2.784E-03 -
2 1.414E-01 1.946E-02 1.415 4.330E-03 1.490 2.003E-03 1.475
3 8.839E-02 9.856E-03 1.447 2.149E-03 1.491 9.985E-04 1.481
4 5.657E-02 5.116E-03 1.469 1.103E-03 1.493 5.145E-04 1.486
5 4.419E-02 3.552E-03 1.478 7.629E-04 1.495 3.562E-04 1.489

Table 2: Computational errors and the corresponding experimental orders of conver-
gence of the SIPG method for α = −3/2
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References
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1999.

[7] Thomée, V.: Galerkin finite element methods for parabolic problems. Springer,
Berlin, 2006.

16


